A structure-guided and edge-preserving algorithm for smoothing 3D seismic data
- Autores
- Gómez, Julián Luis; Velis, Danilo Rubén; Sabbione, Juan Ignacio
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- We present structure-oriented and edge-preserving algorithms for denoising seismic data volumes in the frequencyspace (fxy) domain. After transforming the 3D data to the fxy domain, we apply for each frequency slice, 1D edgepreserving smoothing filters which are guided spatially by the so-called gradient structure tensor. The synthesis of the denoised data shows that incoherent as well as footprint noise can be significantly reduced with no loss of important structural information. The algorithm can be efficiently implemented using linear convolutions to compute the structure tensor and simple 1D edge-preserving operators. Contrarily to other 2D and 3D edge preserving algorithms, the proposed filtering is not limited to impedance data volumes.
Facultad de Ciencias Astronómicas y Geofísicas - Materia
-
Geofísica
Algorithms
Tensor
Filtering - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/146750
Ver los metadatos del registro completo
id |
SEDICI_2e869608066279e4b1c2982bd393cd63 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/146750 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
A structure-guided and edge-preserving algorithm for smoothing 3D seismic dataGómez, Julián LuisVelis, Danilo RubénSabbione, Juan IgnacioGeofísicaAlgorithmsTensorFilteringWe present structure-oriented and edge-preserving algorithms for denoising seismic data volumes in the frequencyspace (fxy) domain. After transforming the 3D data to the fxy domain, we apply for each frequency slice, 1D edgepreserving smoothing filters which are guided spatially by the so-called gradient structure tensor. The synthesis of the denoised data shows that incoherent as well as footprint noise can be significantly reduced with no loss of important structural information. The algorithm can be efficiently implemented using linear convolutions to compute the structure tensor and simple 1D edge-preserving operators. Contrarily to other 2D and 3D edge preserving algorithms, the proposed filtering is not limited to impedance data volumes.Facultad de Ciencias Astronómicas y Geofísicas2017info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/146750enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:37:28Zoai:sedici.unlp.edu.ar:10915/146750Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:37:28.513SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
A structure-guided and edge-preserving algorithm for smoothing 3D seismic data |
title |
A structure-guided and edge-preserving algorithm for smoothing 3D seismic data |
spellingShingle |
A structure-guided and edge-preserving algorithm for smoothing 3D seismic data Gómez, Julián Luis Geofísica Algorithms Tensor Filtering |
title_short |
A structure-guided and edge-preserving algorithm for smoothing 3D seismic data |
title_full |
A structure-guided and edge-preserving algorithm for smoothing 3D seismic data |
title_fullStr |
A structure-guided and edge-preserving algorithm for smoothing 3D seismic data |
title_full_unstemmed |
A structure-guided and edge-preserving algorithm for smoothing 3D seismic data |
title_sort |
A structure-guided and edge-preserving algorithm for smoothing 3D seismic data |
dc.creator.none.fl_str_mv |
Gómez, Julián Luis Velis, Danilo Rubén Sabbione, Juan Ignacio |
author |
Gómez, Julián Luis |
author_facet |
Gómez, Julián Luis Velis, Danilo Rubén Sabbione, Juan Ignacio |
author_role |
author |
author2 |
Velis, Danilo Rubén Sabbione, Juan Ignacio |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Geofísica Algorithms Tensor Filtering |
topic |
Geofísica Algorithms Tensor Filtering |
dc.description.none.fl_txt_mv |
We present structure-oriented and edge-preserving algorithms for denoising seismic data volumes in the frequencyspace (fxy) domain. After transforming the 3D data to the fxy domain, we apply for each frequency slice, 1D edgepreserving smoothing filters which are guided spatially by the so-called gradient structure tensor. The synthesis of the denoised data shows that incoherent as well as footprint noise can be significantly reduced with no loss of important structural information. The algorithm can be efficiently implemented using linear convolutions to compute the structure tensor and simple 1D edge-preserving operators. Contrarily to other 2D and 3D edge preserving algorithms, the proposed filtering is not limited to impedance data volumes. Facultad de Ciencias Astronómicas y Geofísicas |
description |
We present structure-oriented and edge-preserving algorithms for denoising seismic data volumes in the frequencyspace (fxy) domain. After transforming the 3D data to the fxy domain, we apply for each frequency slice, 1D edgepreserving smoothing filters which are guided spatially by the so-called gradient structure tensor. The synthesis of the denoised data shows that incoherent as well as footprint noise can be significantly reduced with no loss of important structural information. The algorithm can be efficiently implemented using linear convolutions to compute the structure tensor and simple 1D edge-preserving operators. Contrarily to other 2D and 3D edge preserving algorithms, the proposed filtering is not limited to impedance data volumes. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/146750 |
url |
http://sedici.unlp.edu.ar/handle/10915/146750 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616251381383168 |
score |
13.070432 |