Astronomical time-series analysis : II. A search for periodicity using the Shannon entropy

Autores
Cincotta, Pablo Miguel; Helmi, Amina; Méndez, Mariano R.; Núñez, Josué Arturo; Vucetich, Héctor
Año de publicación
1999
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We have recently introduced a new method of searching a time series for periodic variability. The method uses the Shannon entropy to measure the amount of information provided by a set of observations that may contain an underlying periodic signal, as a function of the assumed period of this hypothetical periodic signal. Here we present the analytical arguments that support this algorithm within the broader frame of information theory. We also show that, in the absence of a periodic signal, the entropies follow a Gaussian distribution, which then provides an easy way of assessing the signicance of a positive detection. We test this method using simulated data with non-sinusoidal variability, and we show that it is more sensitivethan the classical periodograms or those variations adapted to deal with cases where harmonics are involved. Finally, we show that this method is capable of resolving two, almost identical, frequencies present in a given time series, even in cases where the classical periodograms fail to do so.
Facultad de Ciencias Astronómicas y Geofísicas
Materia
Astronomía
methods: analytical
methods: data analysis
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/141421

id SEDICI_29d18681a4cff2595f71f0b308439f8f
oai_identifier_str oai:sedici.unlp.edu.ar:10915/141421
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Astronomical time-series analysis : II. A search for periodicity using the Shannon entropyCincotta, Pablo MiguelHelmi, AminaMéndez, Mariano R.Núñez, Josué ArturoVucetich, HéctorAstronomíamethods: analyticalmethods: data analysisWe have recently introduced a new method of searching a time series for periodic variability. The method uses the Shannon entropy to measure the amount of information provided by a set of observations that may contain an underlying periodic signal, as a function of the assumed period of this hypothetical periodic signal. Here we present the analytical arguments that support this algorithm within the broader frame of information theory. We also show that, in the absence of a periodic signal, the entropies follow a Gaussian distribution, which then provides an easy way of assessing the signicance of a positive detection. We test this method using simulated data with non-sinusoidal variability, and we show that it is more sensitivethan the classical periodograms or those variations adapted to deal with cases where harmonics are involved. Finally, we show that this method is capable of resolving two, almost identical, frequencies present in a given time series, even in cases where the classical periodograms fail to do so.Facultad de Ciencias Astronómicas y Geofísicas1999-01-21info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf582-586http://sedici.unlp.edu.ar/handle/10915/141421enginfo:eu-repo/semantics/altIdentifier/issn/0035-8711info:eu-repo/semantics/altIdentifier/issn/1365-2966info:eu-repo/semantics/altIdentifier/doi/10.1046/j.1365-8711.1999.02128.xinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:32:03Zoai:sedici.unlp.edu.ar:10915/141421Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:32:03.442SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Astronomical time-series analysis : II. A search for periodicity using the Shannon entropy
title Astronomical time-series analysis : II. A search for periodicity using the Shannon entropy
spellingShingle Astronomical time-series analysis : II. A search for periodicity using the Shannon entropy
Cincotta, Pablo Miguel
Astronomía
methods: analytical
methods: data analysis
title_short Astronomical time-series analysis : II. A search for periodicity using the Shannon entropy
title_full Astronomical time-series analysis : II. A search for periodicity using the Shannon entropy
title_fullStr Astronomical time-series analysis : II. A search for periodicity using the Shannon entropy
title_full_unstemmed Astronomical time-series analysis : II. A search for periodicity using the Shannon entropy
title_sort Astronomical time-series analysis : II. A search for periodicity using the Shannon entropy
dc.creator.none.fl_str_mv Cincotta, Pablo Miguel
Helmi, Amina
Méndez, Mariano R.
Núñez, Josué Arturo
Vucetich, Héctor
author Cincotta, Pablo Miguel
author_facet Cincotta, Pablo Miguel
Helmi, Amina
Méndez, Mariano R.
Núñez, Josué Arturo
Vucetich, Héctor
author_role author
author2 Helmi, Amina
Méndez, Mariano R.
Núñez, Josué Arturo
Vucetich, Héctor
author2_role author
author
author
author
dc.subject.none.fl_str_mv Astronomía
methods: analytical
methods: data analysis
topic Astronomía
methods: analytical
methods: data analysis
dc.description.none.fl_txt_mv We have recently introduced a new method of searching a time series for periodic variability. The method uses the Shannon entropy to measure the amount of information provided by a set of observations that may contain an underlying periodic signal, as a function of the assumed period of this hypothetical periodic signal. Here we present the analytical arguments that support this algorithm within the broader frame of information theory. We also show that, in the absence of a periodic signal, the entropies follow a Gaussian distribution, which then provides an easy way of assessing the signicance of a positive detection. We test this method using simulated data with non-sinusoidal variability, and we show that it is more sensitivethan the classical periodograms or those variations adapted to deal with cases where harmonics are involved. Finally, we show that this method is capable of resolving two, almost identical, frequencies present in a given time series, even in cases where the classical periodograms fail to do so.
Facultad de Ciencias Astronómicas y Geofísicas
description We have recently introduced a new method of searching a time series for periodic variability. The method uses the Shannon entropy to measure the amount of information provided by a set of observations that may contain an underlying periodic signal, as a function of the assumed period of this hypothetical periodic signal. Here we present the analytical arguments that support this algorithm within the broader frame of information theory. We also show that, in the absence of a periodic signal, the entropies follow a Gaussian distribution, which then provides an easy way of assessing the signicance of a positive detection. We test this method using simulated data with non-sinusoidal variability, and we show that it is more sensitivethan the classical periodograms or those variations adapted to deal with cases where harmonics are involved. Finally, we show that this method is capable of resolving two, almost identical, frequencies present in a given time series, even in cases where the classical periodograms fail to do so.
publishDate 1999
dc.date.none.fl_str_mv 1999-01-21
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/141421
url http://sedici.unlp.edu.ar/handle/10915/141421
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/0035-8711
info:eu-repo/semantics/altIdentifier/issn/1365-2966
info:eu-repo/semantics/altIdentifier/doi/10.1046/j.1365-8711.1999.02128.x
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
dc.format.none.fl_str_mv application/pdf
582-586
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616200382840832
score 13.070432