Aplicación de Machine Learning para la predicción de antagonistas del receptor de histamina RH3 como potenciales candidatos terapéuticos
- Autores
- Benitez, Carlos Marcelo; Represa, Natacha Soledad; Di Pasquale, Ricardo; Comba, María Betina; Medina, Vanina; Zanardi, María Marta
- Año de publicación
- 2024
- Idioma
- español castellano
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Los antagonistas del receptor de histamina H3 (RH3) emergen como potenciales fármacos para diversos trastornos neurológicos como Alzheimer o Parkinson, además de su reciente evaluación en el cáncer de mama triple negativo. En este contexto, identificar nuevos ligandos antagonistas del RH3 es de gran interés por su amplio espectro de aplicaciones. Este estudio emplea técnicas de machine learning, específicamente, de regresión con el algoritmo Gradient Boosting (XGBoost), para predecir la afinidad de compuestos orgánicos antagonistas por el RH3 (pKi) utilizando descriptores moleculares. Se recopiló una base de datos con 831 compuestos antagonistas con valores de pKi conocidos, a partir de los cuales se generaron representaciones SMILES y se calcularon 1173 descriptores moleculares de baja dimensionalidad. La base se dividió en conjuntos de entrenamiento (665 registros) y testeo (166 registros). Se entrenaron y evaluaron 10 modelos diferentes, aplicando validación cruzada K-fold=5. El modelo más destacado alcanzó un MSE de 0.54 y un MAE de 0.50 en el conjunto de entrenamiento, y un MSE de 0.76 y un MAE de 0.53 en el conjunto de prueba, con un RMSE de 0.72 y 0.87, respectivamente. Este abordaje quimioinformático propone una metodología eficaz para el cribado virtual de potenciales ligandos antagonistas del RH3, acelerando el descubrimiento de nuevos compuestos terapéuticos.
Sociedad Argentina de Informática e Investigación Operativa - Materia
-
Ciencias Informáticas
machine learning
receptor histamina RH3
cribado virtual - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
.jpg)
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/177172
Ver los metadatos del registro completo
| id |
SEDICI_29567e2ad887c2b04188cf6d23f2308e |
|---|---|
| oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/177172 |
| network_acronym_str |
SEDICI |
| repository_id_str |
1329 |
| network_name_str |
SEDICI (UNLP) |
| spelling |
Aplicación de Machine Learning para la predicción de antagonistas del receptor de histamina RH3 como potenciales candidatos terapéuticosBenitez, Carlos MarceloRepresa, Natacha SoledadDi Pasquale, RicardoComba, María BetinaMedina, VaninaZanardi, María MartaCiencias Informáticasmachine learningreceptor histamina RH3cribado virtualLos antagonistas del receptor de histamina H3 (RH3) emergen como potenciales fármacos para diversos trastornos neurológicos como Alzheimer o Parkinson, además de su reciente evaluación en el cáncer de mama triple negativo. En este contexto, identificar nuevos ligandos antagonistas del RH3 es de gran interés por su amplio espectro de aplicaciones. Este estudio emplea técnicas de machine learning, específicamente, de regresión con el algoritmo Gradient Boosting (XGBoost), para predecir la afinidad de compuestos orgánicos antagonistas por el RH3 (pKi) utilizando descriptores moleculares. Se recopiló una base de datos con 831 compuestos antagonistas con valores de pKi conocidos, a partir de los cuales se generaron representaciones SMILES y se calcularon 1173 descriptores moleculares de baja dimensionalidad. La base se dividió en conjuntos de entrenamiento (665 registros) y testeo (166 registros). Se entrenaron y evaluaron 10 modelos diferentes, aplicando validación cruzada K-fold=5. El modelo más destacado alcanzó un MSE de 0.54 y un MAE de 0.50 en el conjunto de entrenamiento, y un MSE de 0.76 y un MAE de 0.53 en el conjunto de prueba, con un RMSE de 0.72 y 0.87, respectivamente. Este abordaje quimioinformático propone una metodología eficaz para el cribado virtual de potenciales ligandos antagonistas del RH3, acelerando el descubrimiento de nuevos compuestos terapéuticos.Sociedad Argentina de Informática e Investigación Operativa2024-08info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf56-59http://sedici.unlp.edu.ar/handle/10915/177172spainfo:eu-repo/semantics/altIdentifier/url/https://revistas.unlp.edu.ar/JAIIO/article/view/17922info:eu-repo/semantics/altIdentifier/issn/2451-7496info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T11:39:37Zoai:sedici.unlp.edu.ar:10915/177172Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 11:39:37.4SEDICI (UNLP) - Universidad Nacional de La Platafalse |
| dc.title.none.fl_str_mv |
Aplicación de Machine Learning para la predicción de antagonistas del receptor de histamina RH3 como potenciales candidatos terapéuticos |
| title |
Aplicación de Machine Learning para la predicción de antagonistas del receptor de histamina RH3 como potenciales candidatos terapéuticos |
| spellingShingle |
Aplicación de Machine Learning para la predicción de antagonistas del receptor de histamina RH3 como potenciales candidatos terapéuticos Benitez, Carlos Marcelo Ciencias Informáticas machine learning receptor histamina RH3 cribado virtual |
| title_short |
Aplicación de Machine Learning para la predicción de antagonistas del receptor de histamina RH3 como potenciales candidatos terapéuticos |
| title_full |
Aplicación de Machine Learning para la predicción de antagonistas del receptor de histamina RH3 como potenciales candidatos terapéuticos |
| title_fullStr |
Aplicación de Machine Learning para la predicción de antagonistas del receptor de histamina RH3 como potenciales candidatos terapéuticos |
| title_full_unstemmed |
Aplicación de Machine Learning para la predicción de antagonistas del receptor de histamina RH3 como potenciales candidatos terapéuticos |
| title_sort |
Aplicación de Machine Learning para la predicción de antagonistas del receptor de histamina RH3 como potenciales candidatos terapéuticos |
| dc.creator.none.fl_str_mv |
Benitez, Carlos Marcelo Represa, Natacha Soledad Di Pasquale, Ricardo Comba, María Betina Medina, Vanina Zanardi, María Marta |
| author |
Benitez, Carlos Marcelo |
| author_facet |
Benitez, Carlos Marcelo Represa, Natacha Soledad Di Pasquale, Ricardo Comba, María Betina Medina, Vanina Zanardi, María Marta |
| author_role |
author |
| author2 |
Represa, Natacha Soledad Di Pasquale, Ricardo Comba, María Betina Medina, Vanina Zanardi, María Marta |
| author2_role |
author author author author author |
| dc.subject.none.fl_str_mv |
Ciencias Informáticas machine learning receptor histamina RH3 cribado virtual |
| topic |
Ciencias Informáticas machine learning receptor histamina RH3 cribado virtual |
| dc.description.none.fl_txt_mv |
Los antagonistas del receptor de histamina H3 (RH3) emergen como potenciales fármacos para diversos trastornos neurológicos como Alzheimer o Parkinson, además de su reciente evaluación en el cáncer de mama triple negativo. En este contexto, identificar nuevos ligandos antagonistas del RH3 es de gran interés por su amplio espectro de aplicaciones. Este estudio emplea técnicas de machine learning, específicamente, de regresión con el algoritmo Gradient Boosting (XGBoost), para predecir la afinidad de compuestos orgánicos antagonistas por el RH3 (pKi) utilizando descriptores moleculares. Se recopiló una base de datos con 831 compuestos antagonistas con valores de pKi conocidos, a partir de los cuales se generaron representaciones SMILES y se calcularon 1173 descriptores moleculares de baja dimensionalidad. La base se dividió en conjuntos de entrenamiento (665 registros) y testeo (166 registros). Se entrenaron y evaluaron 10 modelos diferentes, aplicando validación cruzada K-fold=5. El modelo más destacado alcanzó un MSE de 0.54 y un MAE de 0.50 en el conjunto de entrenamiento, y un MSE de 0.76 y un MAE de 0.53 en el conjunto de prueba, con un RMSE de 0.72 y 0.87, respectivamente. Este abordaje quimioinformático propone una metodología eficaz para el cribado virtual de potenciales ligandos antagonistas del RH3, acelerando el descubrimiento de nuevos compuestos terapéuticos. Sociedad Argentina de Informática e Investigación Operativa |
| description |
Los antagonistas del receptor de histamina H3 (RH3) emergen como potenciales fármacos para diversos trastornos neurológicos como Alzheimer o Parkinson, además de su reciente evaluación en el cáncer de mama triple negativo. En este contexto, identificar nuevos ligandos antagonistas del RH3 es de gran interés por su amplio espectro de aplicaciones. Este estudio emplea técnicas de machine learning, específicamente, de regresión con el algoritmo Gradient Boosting (XGBoost), para predecir la afinidad de compuestos orgánicos antagonistas por el RH3 (pKi) utilizando descriptores moleculares. Se recopiló una base de datos con 831 compuestos antagonistas con valores de pKi conocidos, a partir de los cuales se generaron representaciones SMILES y se calcularon 1173 descriptores moleculares de baja dimensionalidad. La base se dividió en conjuntos de entrenamiento (665 registros) y testeo (166 registros). Se entrenaron y evaluaron 10 modelos diferentes, aplicando validación cruzada K-fold=5. El modelo más destacado alcanzó un MSE de 0.54 y un MAE de 0.50 en el conjunto de entrenamiento, y un MSE de 0.76 y un MAE de 0.53 en el conjunto de prueba, con un RMSE de 0.72 y 0.87, respectivamente. Este abordaje quimioinformático propone una metodología eficaz para el cribado virtual de potenciales ligandos antagonistas del RH3, acelerando el descubrimiento de nuevos compuestos terapéuticos. |
| publishDate |
2024 |
| dc.date.none.fl_str_mv |
2024-08 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
| format |
conferenceObject |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/177172 |
| url |
http://sedici.unlp.edu.ar/handle/10915/177172 |
| dc.language.none.fl_str_mv |
spa |
| language |
spa |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://revistas.unlp.edu.ar/JAIIO/article/view/17922 info:eu-repo/semantics/altIdentifier/issn/2451-7496 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
| dc.format.none.fl_str_mv |
application/pdf 56-59 |
| dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
| reponame_str |
SEDICI (UNLP) |
| collection |
SEDICI (UNLP) |
| instname_str |
Universidad Nacional de La Plata |
| instacron_str |
UNLP |
| institution |
UNLP |
| repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
| repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
| _version_ |
1846064410860191744 |
| score |
13.22299 |