Modelo de densificación de pastillas combustibles bajo irradiación

Autores
Cazado, Mauricio E.; Denis, Alicia
Año de publicación
2017
Idioma
español castellano
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
Una vez finalizado el proceso de fabricación de pastillas combustibles, la microestructura mantiene una cierta porosidad. Durante la irradiación se producen dos fenómenos contrapuestos que afectan la estabilidad dimensional del combustible: densificación e hinchamiento. La densificación es la contracción que sufren los poros de fabricación durante las primeras horas de irradiación, mientras que el hinchamiento ocurre principalmente debido a los gases de fisión que se liberan y acumulan tanto en las nuevas burbujas que se nuclean como en ciertos poros de fabricación durante todo el quemado del combustible. Los cambios dimensionales que se generan pueden dar lugar a contacto localizado entre la pastilla y la vaina y, eventualmente, ocasionar la falla de los componentes lo cual comprometería la seguridad de las instalaciones nucleares. Es fundamental efectuar una descripción cuantitativa de estos procesos junto a las relaciones que tienen con las variables operacionales y los parámetros del material para poder determinar las propiedades limitantes de los materiales involucrados y mejorar el desempeño de los códigos en las simulaciones. El modelo de densificación que se presenta explica la contracción de los poros como consecuencia de la emisión de vacancias y recepción de intersticiales por los poros bajo los efectos de la temperatura y la irradiación. Asimismo, muestra que la densificación se debe principalmente a la desaparición de los poros más pequeños, modificándose así la distribución de tamaños de poros. Para ello, se resuelven las ecuaciones de difusión de vacancias e intersticiales, en un grano promedio de UO2 que se supone esférico, a través del método de diferencias finitas. Como primera aplicación, este modelo se utilizó para describir la densificación en experimentos de resinterizado en los cuales sólo se observa el efecto de la temperatura. Los resultados obtenidos por las simulaciones se comparan con los datos experimentales reportados en la literatura abierta, obteniendo un buen acuerdo. Se destaca que se encuentra aún en desarrollo un modelo de hinchamiento.
Publicado en: Mecánica Computacional vol. XXXV no.31
Facultad de Ingeniería
Materia
Ingeniería
Simulación
Combustible nuclear
Densificación
Microestructura
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/105194

id SEDICI_28213ef57bddcc680ccb4dce50ad983a
oai_identifier_str oai:sedici.unlp.edu.ar:10915/105194
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Modelo de densificación de pastillas combustibles bajo irradiaciónCazado, Mauricio E.Denis, AliciaIngenieríaSimulaciónCombustible nuclearDensificaciónMicroestructuraUna vez finalizado el proceso de fabricación de pastillas combustibles, la microestructura mantiene una cierta porosidad. Durante la irradiación se producen dos fenómenos contrapuestos que afectan la estabilidad dimensional del combustible: densificación e hinchamiento. La densificación es la contracción que sufren los poros de fabricación durante las primeras horas de irradiación, mientras que el hinchamiento ocurre principalmente debido a los gases de fisión que se liberan y acumulan tanto en las nuevas burbujas que se nuclean como en ciertos poros de fabricación durante todo el quemado del combustible. Los cambios dimensionales que se generan pueden dar lugar a contacto localizado entre la pastilla y la vaina y, eventualmente, ocasionar la falla de los componentes lo cual comprometería la seguridad de las instalaciones nucleares. Es fundamental efectuar una descripción cuantitativa de estos procesos junto a las relaciones que tienen con las variables operacionales y los parámetros del material para poder determinar las propiedades limitantes de los materiales involucrados y mejorar el desempeño de los códigos en las simulaciones. El modelo de densificación que se presenta explica la contracción de los poros como consecuencia de la emisión de vacancias y recepción de intersticiales por los poros bajo los efectos de la temperatura y la irradiación. Asimismo, muestra que la densificación se debe principalmente a la desaparición de los poros más pequeños, modificándose así la distribución de tamaños de poros. Para ello, se resuelven las ecuaciones de difusión de vacancias e intersticiales, en un grano promedio de UO<SUB>2</SUB> que se supone esférico, a través del método de diferencias finitas. Como primera aplicación, este modelo se utilizó para describir la densificación en experimentos de resinterizado en los cuales sólo se observa el efecto de la temperatura. Los resultados obtenidos por las simulaciones se comparan con los datos experimentales reportados en la literatura abierta, obteniendo un buen acuerdo. Se destaca que se encuentra aún en desarrollo un modelo de hinchamiento.Publicado en: <i>Mecánica Computacional</i> vol. XXXV no.31Facultad de Ingeniería2017-11info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf1723-1734http://sedici.unlp.edu.ar/handle/10915/105194spainfo:eu-repo/semantics/altIdentifier/url/https://cimec.org.ar/ojs/index.php/mc/article/view/5392info:eu-repo/semantics/altIdentifier/issn/2591-3522info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:23:22Zoai:sedici.unlp.edu.ar:10915/105194Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:23:22.684SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Modelo de densificación de pastillas combustibles bajo irradiación
title Modelo de densificación de pastillas combustibles bajo irradiación
spellingShingle Modelo de densificación de pastillas combustibles bajo irradiación
Cazado, Mauricio E.
Ingeniería
Simulación
Combustible nuclear
Densificación
Microestructura
title_short Modelo de densificación de pastillas combustibles bajo irradiación
title_full Modelo de densificación de pastillas combustibles bajo irradiación
title_fullStr Modelo de densificación de pastillas combustibles bajo irradiación
title_full_unstemmed Modelo de densificación de pastillas combustibles bajo irradiación
title_sort Modelo de densificación de pastillas combustibles bajo irradiación
dc.creator.none.fl_str_mv Cazado, Mauricio E.
Denis, Alicia
author Cazado, Mauricio E.
author_facet Cazado, Mauricio E.
Denis, Alicia
author_role author
author2 Denis, Alicia
author2_role author
dc.subject.none.fl_str_mv Ingeniería
Simulación
Combustible nuclear
Densificación
Microestructura
topic Ingeniería
Simulación
Combustible nuclear
Densificación
Microestructura
dc.description.none.fl_txt_mv Una vez finalizado el proceso de fabricación de pastillas combustibles, la microestructura mantiene una cierta porosidad. Durante la irradiación se producen dos fenómenos contrapuestos que afectan la estabilidad dimensional del combustible: densificación e hinchamiento. La densificación es la contracción que sufren los poros de fabricación durante las primeras horas de irradiación, mientras que el hinchamiento ocurre principalmente debido a los gases de fisión que se liberan y acumulan tanto en las nuevas burbujas que se nuclean como en ciertos poros de fabricación durante todo el quemado del combustible. Los cambios dimensionales que se generan pueden dar lugar a contacto localizado entre la pastilla y la vaina y, eventualmente, ocasionar la falla de los componentes lo cual comprometería la seguridad de las instalaciones nucleares. Es fundamental efectuar una descripción cuantitativa de estos procesos junto a las relaciones que tienen con las variables operacionales y los parámetros del material para poder determinar las propiedades limitantes de los materiales involucrados y mejorar el desempeño de los códigos en las simulaciones. El modelo de densificación que se presenta explica la contracción de los poros como consecuencia de la emisión de vacancias y recepción de intersticiales por los poros bajo los efectos de la temperatura y la irradiación. Asimismo, muestra que la densificación se debe principalmente a la desaparición de los poros más pequeños, modificándose así la distribución de tamaños de poros. Para ello, se resuelven las ecuaciones de difusión de vacancias e intersticiales, en un grano promedio de UO<SUB>2</SUB> que se supone esférico, a través del método de diferencias finitas. Como primera aplicación, este modelo se utilizó para describir la densificación en experimentos de resinterizado en los cuales sólo se observa el efecto de la temperatura. Los resultados obtenidos por las simulaciones se comparan con los datos experimentales reportados en la literatura abierta, obteniendo un buen acuerdo. Se destaca que se encuentra aún en desarrollo un modelo de hinchamiento.
Publicado en: <i>Mecánica Computacional</i> vol. XXXV no.31
Facultad de Ingeniería
description Una vez finalizado el proceso de fabricación de pastillas combustibles, la microestructura mantiene una cierta porosidad. Durante la irradiación se producen dos fenómenos contrapuestos que afectan la estabilidad dimensional del combustible: densificación e hinchamiento. La densificación es la contracción que sufren los poros de fabricación durante las primeras horas de irradiación, mientras que el hinchamiento ocurre principalmente debido a los gases de fisión que se liberan y acumulan tanto en las nuevas burbujas que se nuclean como en ciertos poros de fabricación durante todo el quemado del combustible. Los cambios dimensionales que se generan pueden dar lugar a contacto localizado entre la pastilla y la vaina y, eventualmente, ocasionar la falla de los componentes lo cual comprometería la seguridad de las instalaciones nucleares. Es fundamental efectuar una descripción cuantitativa de estos procesos junto a las relaciones que tienen con las variables operacionales y los parámetros del material para poder determinar las propiedades limitantes de los materiales involucrados y mejorar el desempeño de los códigos en las simulaciones. El modelo de densificación que se presenta explica la contracción de los poros como consecuencia de la emisión de vacancias y recepción de intersticiales por los poros bajo los efectos de la temperatura y la irradiación. Asimismo, muestra que la densificación se debe principalmente a la desaparición de los poros más pequeños, modificándose así la distribución de tamaños de poros. Para ello, se resuelven las ecuaciones de difusión de vacancias e intersticiales, en un grano promedio de UO<SUB>2</SUB> que se supone esférico, a través del método de diferencias finitas. Como primera aplicación, este modelo se utilizó para describir la densificación en experimentos de resinterizado en los cuales sólo se observa el efecto de la temperatura. Los resultados obtenidos por las simulaciones se comparan con los datos experimentales reportados en la literatura abierta, obteniendo un buen acuerdo. Se destaca que se encuentra aún en desarrollo un modelo de hinchamiento.
publishDate 2017
dc.date.none.fl_str_mv 2017-11
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/105194
url http://sedici.unlp.edu.ar/handle/10915/105194
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://cimec.org.ar/ojs/index.php/mc/article/view/5392
info:eu-repo/semantics/altIdentifier/issn/2591-3522
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
1723-1734
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616109942112256
score 13.070432