Useful model to understand Schwartz’ distributions’ approach to non-renormalizable QFTs

Autores
Rocca, Mario Carlos; Plastino, Ángel Luis
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Quantum Field Theory (QFT) is a difficult subject, plagued by puzzling infinities. Its most formidable challenge is the existence of many non-renormalizable QFT theories, for which the number of infinities is itself infinite. We will here appeal to a rather non-conventional QFT approach developed in [J. of Phys. Comm. 2 115029 (2018)] that uses Schwartz’ distribution theory (SDT). This technique avoids the need for counterterms. In the SDT approach to QFT, infinities arise due to the presence of products of distributions with coincident point singularities. In the present study, we will carefully discuss a simple QFT-model devised by Bollini and Giambiagi. Because of its simplicity, it makes easy to appreciate just how it is possible to successfully deal with the issue of non-renormalizability via SDT.
Facultad de Ciencias Exactas
Instituto de Física La Plata
Materia
Física
Matemática
Schwartz’ distributions approach to QFT
Dimensional regularization
Lorentz invariant distributions
Convolution of Schwartz’ distributions
Non-renormalizable quantum feld theories
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/139203

id SEDICI_27ee8077613b920ccccbbb0adb0f8537
oai_identifier_str oai:sedici.unlp.edu.ar:10915/139203
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Useful model to understand Schwartz’ distributions’ approach to non-renormalizable QFTsRocca, Mario CarlosPlastino, Ángel LuisFísicaMatemáticaSchwartz’ distributions approach to QFTDimensional regularizationLorentz invariant distributionsConvolution of Schwartz’ distributionsNon-renormalizable quantum feld theoriesQuantum Field Theory (QFT) is a difficult subject, plagued by puzzling infinities. Its most formidable challenge is the existence of many non-renormalizable QFT theories, for which the number of infinities is itself infinite. We will here appeal to a rather non-conventional QFT approach developed in [J. of Phys. Comm. 2 115029 (2018)] that uses Schwartz’ distribution theory (SDT). This technique avoids the need for counterterms. In the SDT approach to QFT, infinities arise due to the presence of products of distributions with coincident point singularities. In the present study, we will carefully discuss a simple QFT-model devised by Bollini and Giambiagi. Because of its simplicity, it makes easy to appreciate just how it is possible to successfully deal with the issue of non-renormalizability via SDT.Facultad de Ciencias ExactasInstituto de Física La Plata2021-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf803-812http://sedici.unlp.edu.ar/handle/10915/139203enginfo:eu-repo/semantics/altIdentifier/issn/0103-9733info:eu-repo/semantics/altIdentifier/issn/1678-4448info:eu-repo/semantics/altIdentifier/doi/10.1007/s13538-021-00882-yinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-17T10:14:46Zoai:sedici.unlp.edu.ar:10915/139203Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-17 10:14:46.866SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Useful model to understand Schwartz’ distributions’ approach to non-renormalizable QFTs
title Useful model to understand Schwartz’ distributions’ approach to non-renormalizable QFTs
spellingShingle Useful model to understand Schwartz’ distributions’ approach to non-renormalizable QFTs
Rocca, Mario Carlos
Física
Matemática
Schwartz’ distributions approach to QFT
Dimensional regularization
Lorentz invariant distributions
Convolution of Schwartz’ distributions
Non-renormalizable quantum feld theories
title_short Useful model to understand Schwartz’ distributions’ approach to non-renormalizable QFTs
title_full Useful model to understand Schwartz’ distributions’ approach to non-renormalizable QFTs
title_fullStr Useful model to understand Schwartz’ distributions’ approach to non-renormalizable QFTs
title_full_unstemmed Useful model to understand Schwartz’ distributions’ approach to non-renormalizable QFTs
title_sort Useful model to understand Schwartz’ distributions’ approach to non-renormalizable QFTs
dc.creator.none.fl_str_mv Rocca, Mario Carlos
Plastino, Ángel Luis
author Rocca, Mario Carlos
author_facet Rocca, Mario Carlos
Plastino, Ángel Luis
author_role author
author2 Plastino, Ángel Luis
author2_role author
dc.subject.none.fl_str_mv Física
Matemática
Schwartz’ distributions approach to QFT
Dimensional regularization
Lorentz invariant distributions
Convolution of Schwartz’ distributions
Non-renormalizable quantum feld theories
topic Física
Matemática
Schwartz’ distributions approach to QFT
Dimensional regularization
Lorentz invariant distributions
Convolution of Schwartz’ distributions
Non-renormalizable quantum feld theories
dc.description.none.fl_txt_mv Quantum Field Theory (QFT) is a difficult subject, plagued by puzzling infinities. Its most formidable challenge is the existence of many non-renormalizable QFT theories, for which the number of infinities is itself infinite. We will here appeal to a rather non-conventional QFT approach developed in [J. of Phys. Comm. 2 115029 (2018)] that uses Schwartz’ distribution theory (SDT). This technique avoids the need for counterterms. In the SDT approach to QFT, infinities arise due to the presence of products of distributions with coincident point singularities. In the present study, we will carefully discuss a simple QFT-model devised by Bollini and Giambiagi. Because of its simplicity, it makes easy to appreciate just how it is possible to successfully deal with the issue of non-renormalizability via SDT.
Facultad de Ciencias Exactas
Instituto de Física La Plata
description Quantum Field Theory (QFT) is a difficult subject, plagued by puzzling infinities. Its most formidable challenge is the existence of many non-renormalizable QFT theories, for which the number of infinities is itself infinite. We will here appeal to a rather non-conventional QFT approach developed in [J. of Phys. Comm. 2 115029 (2018)] that uses Schwartz’ distribution theory (SDT). This technique avoids the need for counterterms. In the SDT approach to QFT, infinities arise due to the presence of products of distributions with coincident point singularities. In the present study, we will carefully discuss a simple QFT-model devised by Bollini and Giambiagi. Because of its simplicity, it makes easy to appreciate just how it is possible to successfully deal with the issue of non-renormalizability via SDT.
publishDate 2021
dc.date.none.fl_str_mv 2021-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/139203
url http://sedici.unlp.edu.ar/handle/10915/139203
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/0103-9733
info:eu-repo/semantics/altIdentifier/issn/1678-4448
info:eu-repo/semantics/altIdentifier/doi/10.1007/s13538-021-00882-y
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
dc.format.none.fl_str_mv application/pdf
803-812
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1843532787190071296
score 13.000565