Useful model to understand Schwartz’ distributions’ approach to non-renormalizable QFTs
- Autores
- Rocca, Mario Carlos; Plastino, Ángel Luis
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Quantum Field Theory (QFT) is a difficult subject, plagued by puzzling infinities. Its most formidable challenge is the existence of many non-renormalizable QFT theories, for which the number of infinities is itself infinite. We will here appeal to a rather non-conventional QFT approach developed in [J. of Phys. Comm. 2 115029 (2018)] that uses Schwartz’ distribution theory (SDT). This technique avoids the need for counterterms. In the SDT approach to QFT, infinities arise due to the presence of products of distributions with coincident point singularities. In the present study, we will carefully discuss a simple QFT-model devised by Bollini and Giambiagi. Because of its simplicity, it makes easy to appreciate just how it is possible to successfully deal with the issue of non-renormalizability via SDT.
Facultad de Ciencias Exactas
Instituto de Física La Plata - Materia
-
Física
Matemática
Schwartz’ distributions approach to QFT
Dimensional regularization
Lorentz invariant distributions
Convolution of Schwartz’ distributions
Non-renormalizable quantum feld theories - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/139203
Ver los metadatos del registro completo
id |
SEDICI_27ee8077613b920ccccbbb0adb0f8537 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/139203 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Useful model to understand Schwartz’ distributions’ approach to non-renormalizable QFTsRocca, Mario CarlosPlastino, Ángel LuisFísicaMatemáticaSchwartz’ distributions approach to QFTDimensional regularizationLorentz invariant distributionsConvolution of Schwartz’ distributionsNon-renormalizable quantum feld theoriesQuantum Field Theory (QFT) is a difficult subject, plagued by puzzling infinities. Its most formidable challenge is the existence of many non-renormalizable QFT theories, for which the number of infinities is itself infinite. We will here appeal to a rather non-conventional QFT approach developed in [J. of Phys. Comm. 2 115029 (2018)] that uses Schwartz’ distribution theory (SDT). This technique avoids the need for counterterms. In the SDT approach to QFT, infinities arise due to the presence of products of distributions with coincident point singularities. In the present study, we will carefully discuss a simple QFT-model devised by Bollini and Giambiagi. Because of its simplicity, it makes easy to appreciate just how it is possible to successfully deal with the issue of non-renormalizability via SDT.Facultad de Ciencias ExactasInstituto de Física La Plata2021-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf803-812http://sedici.unlp.edu.ar/handle/10915/139203enginfo:eu-repo/semantics/altIdentifier/issn/0103-9733info:eu-repo/semantics/altIdentifier/issn/1678-4448info:eu-repo/semantics/altIdentifier/doi/10.1007/s13538-021-00882-yinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-17T10:14:46Zoai:sedici.unlp.edu.ar:10915/139203Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-17 10:14:46.866SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Useful model to understand Schwartz’ distributions’ approach to non-renormalizable QFTs |
title |
Useful model to understand Schwartz’ distributions’ approach to non-renormalizable QFTs |
spellingShingle |
Useful model to understand Schwartz’ distributions’ approach to non-renormalizable QFTs Rocca, Mario Carlos Física Matemática Schwartz’ distributions approach to QFT Dimensional regularization Lorentz invariant distributions Convolution of Schwartz’ distributions Non-renormalizable quantum feld theories |
title_short |
Useful model to understand Schwartz’ distributions’ approach to non-renormalizable QFTs |
title_full |
Useful model to understand Schwartz’ distributions’ approach to non-renormalizable QFTs |
title_fullStr |
Useful model to understand Schwartz’ distributions’ approach to non-renormalizable QFTs |
title_full_unstemmed |
Useful model to understand Schwartz’ distributions’ approach to non-renormalizable QFTs |
title_sort |
Useful model to understand Schwartz’ distributions’ approach to non-renormalizable QFTs |
dc.creator.none.fl_str_mv |
Rocca, Mario Carlos Plastino, Ángel Luis |
author |
Rocca, Mario Carlos |
author_facet |
Rocca, Mario Carlos Plastino, Ángel Luis |
author_role |
author |
author2 |
Plastino, Ángel Luis |
author2_role |
author |
dc.subject.none.fl_str_mv |
Física Matemática Schwartz’ distributions approach to QFT Dimensional regularization Lorentz invariant distributions Convolution of Schwartz’ distributions Non-renormalizable quantum feld theories |
topic |
Física Matemática Schwartz’ distributions approach to QFT Dimensional regularization Lorentz invariant distributions Convolution of Schwartz’ distributions Non-renormalizable quantum feld theories |
dc.description.none.fl_txt_mv |
Quantum Field Theory (QFT) is a difficult subject, plagued by puzzling infinities. Its most formidable challenge is the existence of many non-renormalizable QFT theories, for which the number of infinities is itself infinite. We will here appeal to a rather non-conventional QFT approach developed in [J. of Phys. Comm. 2 115029 (2018)] that uses Schwartz’ distribution theory (SDT). This technique avoids the need for counterterms. In the SDT approach to QFT, infinities arise due to the presence of products of distributions with coincident point singularities. In the present study, we will carefully discuss a simple QFT-model devised by Bollini and Giambiagi. Because of its simplicity, it makes easy to appreciate just how it is possible to successfully deal with the issue of non-renormalizability via SDT. Facultad de Ciencias Exactas Instituto de Física La Plata |
description |
Quantum Field Theory (QFT) is a difficult subject, plagued by puzzling infinities. Its most formidable challenge is the existence of many non-renormalizable QFT theories, for which the number of infinities is itself infinite. We will here appeal to a rather non-conventional QFT approach developed in [J. of Phys. Comm. 2 115029 (2018)] that uses Schwartz’ distribution theory (SDT). This technique avoids the need for counterterms. In the SDT approach to QFT, infinities arise due to the presence of products of distributions with coincident point singularities. In the present study, we will carefully discuss a simple QFT-model devised by Bollini and Giambiagi. Because of its simplicity, it makes easy to appreciate just how it is possible to successfully deal with the issue of non-renormalizability via SDT. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/139203 |
url |
http://sedici.unlp.edu.ar/handle/10915/139203 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/0103-9733 info:eu-repo/semantics/altIdentifier/issn/1678-4448 info:eu-repo/semantics/altIdentifier/doi/10.1007/s13538-021-00882-y |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
dc.format.none.fl_str_mv |
application/pdf 803-812 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1843532787190071296 |
score |
13.000565 |