Sampling RTB transactions in an online machine learning setting
- Autores
- Pita, Carlos
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- We (the machine learning team at Jampp) strive to predict click-through rates (CTR) and conversion rates (CVR) for the real-time bidding (RTB) online advertising market by means of an in-house online machine learning platform based on a state-of-the-art stochastic gradient descent estimator. Our estimation framework has already been covered in a previous paper, so here we want to focus on some peripheral aspects of our platform that, in spite of being of a somewhat ancillary nature, nevertheless tend to dominate development efforts and overall system complexity; namely, in order to feed the learning system we first need to sample a very high-volume stream of out-of-order and scattered-in-time events and consolidate them into a sequence of observations representing the underlying market transactions, each observation composed of a set of features and a response, from which the estimator is ultimately able to learn. This paper is written in a down-to-earth fashion: we describe a number of particular difficulties the general problem of sampling in an online high-volume setting poses and then we present our concrete answers to those difficulties based on real, hands-on, experience.
Sociedad Argentina de Informática e Investigación Operativa (SADIO) - Materia
-
Ciencias Informáticas
Streaming events
demand-side platform
events - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-sa/3.0/
- Repositorio
.jpg)
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/56845
Ver los metadatos del registro completo
| id |
SEDICI_261af94a6088a59755357f9d41f204b5 |
|---|---|
| oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/56845 |
| network_acronym_str |
SEDICI |
| repository_id_str |
1329 |
| network_name_str |
SEDICI (UNLP) |
| spelling |
Sampling RTB transactions in an online machine learning settingPita, CarlosCiencias InformáticasStreaming eventsdemand-side platformeventsWe (the machine learning team at Jampp) strive to predict click-through rates (CTR) and conversion rates (CVR) for the real-time bidding (RTB) online advertising market by means of an in-house online machine learning platform based on a state-of-the-art stochastic gradient descent estimator. Our estimation framework has already been covered in a previous paper, so here we want to focus on some peripheral aspects of our platform that, in spite of being of a somewhat ancillary nature, nevertheless tend to dominate development efforts and overall system complexity; namely, in order to feed the learning system we first need to sample a very high-volume stream of out-of-order and scattered-in-time events and consolidate them into a sequence of observations representing the underlying market transactions, each observation composed of a set of features and a response, from which the estimator is ultimately able to learn. This paper is written in a down-to-earth fashion: we describe a number of particular difficulties the general problem of sampling in an online high-volume setting poses and then we present our concrete answers to those difficulties based on real, hands-on, experience.Sociedad Argentina de Informática e Investigación Operativa (SADIO)2016-09info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf1-7http://sedici.unlp.edu.ar/handle/10915/56845enginfo:eu-repo/semantics/altIdentifier/url/http://45jaiio.sadio.org.ar/sites/default/files/AGRANDA-11.pdfinfo:eu-repo/semantics/altIdentifier/issn/2451-7569info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-sa/3.0/Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-11-26T09:44:44Zoai:sedici.unlp.edu.ar:10915/56845Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-11-26 09:44:45.16SEDICI (UNLP) - Universidad Nacional de La Platafalse |
| dc.title.none.fl_str_mv |
Sampling RTB transactions in an online machine learning setting |
| title |
Sampling RTB transactions in an online machine learning setting |
| spellingShingle |
Sampling RTB transactions in an online machine learning setting Pita, Carlos Ciencias Informáticas Streaming events demand-side platform events |
| title_short |
Sampling RTB transactions in an online machine learning setting |
| title_full |
Sampling RTB transactions in an online machine learning setting |
| title_fullStr |
Sampling RTB transactions in an online machine learning setting |
| title_full_unstemmed |
Sampling RTB transactions in an online machine learning setting |
| title_sort |
Sampling RTB transactions in an online machine learning setting |
| dc.creator.none.fl_str_mv |
Pita, Carlos |
| author |
Pita, Carlos |
| author_facet |
Pita, Carlos |
| author_role |
author |
| dc.subject.none.fl_str_mv |
Ciencias Informáticas Streaming events demand-side platform events |
| topic |
Ciencias Informáticas Streaming events demand-side platform events |
| dc.description.none.fl_txt_mv |
We (the machine learning team at Jampp) strive to predict click-through rates (CTR) and conversion rates (CVR) for the real-time bidding (RTB) online advertising market by means of an in-house online machine learning platform based on a state-of-the-art stochastic gradient descent estimator. Our estimation framework has already been covered in a previous paper, so here we want to focus on some peripheral aspects of our platform that, in spite of being of a somewhat ancillary nature, nevertheless tend to dominate development efforts and overall system complexity; namely, in order to feed the learning system we first need to sample a very high-volume stream of out-of-order and scattered-in-time events and consolidate them into a sequence of observations representing the underlying market transactions, each observation composed of a set of features and a response, from which the estimator is ultimately able to learn. This paper is written in a down-to-earth fashion: we describe a number of particular difficulties the general problem of sampling in an online high-volume setting poses and then we present our concrete answers to those difficulties based on real, hands-on, experience. Sociedad Argentina de Informática e Investigación Operativa (SADIO) |
| description |
We (the machine learning team at Jampp) strive to predict click-through rates (CTR) and conversion rates (CVR) for the real-time bidding (RTB) online advertising market by means of an in-house online machine learning platform based on a state-of-the-art stochastic gradient descent estimator. Our estimation framework has already been covered in a previous paper, so here we want to focus on some peripheral aspects of our platform that, in spite of being of a somewhat ancillary nature, nevertheless tend to dominate development efforts and overall system complexity; namely, in order to feed the learning system we first need to sample a very high-volume stream of out-of-order and scattered-in-time events and consolidate them into a sequence of observations representing the underlying market transactions, each observation composed of a set of features and a response, from which the estimator is ultimately able to learn. This paper is written in a down-to-earth fashion: we describe a number of particular difficulties the general problem of sampling in an online high-volume setting poses and then we present our concrete answers to those difficulties based on real, hands-on, experience. |
| publishDate |
2016 |
| dc.date.none.fl_str_mv |
2016-09 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
| format |
conferenceObject |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/56845 |
| url |
http://sedici.unlp.edu.ar/handle/10915/56845 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://45jaiio.sadio.org.ar/sites/default/files/AGRANDA-11.pdf info:eu-repo/semantics/altIdentifier/issn/2451-7569 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-sa/3.0/ Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0) |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-sa/3.0/ Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0) |
| dc.format.none.fl_str_mv |
application/pdf 1-7 |
| dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
| reponame_str |
SEDICI (UNLP) |
| collection |
SEDICI (UNLP) |
| instname_str |
Universidad Nacional de La Plata |
| instacron_str |
UNLP |
| institution |
UNLP |
| repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
| repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
| _version_ |
1849875865142296576 |
| score |
13.011256 |