Seismic Event Detection in the Copahue Volcano Based on Machine Learning: Towards an On-the-Edge Implementation
- Autores
- Mauad Sosa, Yair; Molina, Romina Soledad; Spagnotto, Silvana Liz; Fernandez Melchor, Ivan; Nuñez Manquez, Alejandro Enrique; Crespo, Maria Liz; Ramponi, Giovanni; Petrino, Ricardo
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This study focuses on volcano seismic event detection using machine learning, leveraging the advantages of software/hardware co-design for system on chip (SoC) based on field programmable gate array (FPGA) devices. The case study was the Copahue Volcano, an active stratovolcano located on the border between Argentina and Chile. Volcano seismic event processing and detection were integrated into a PYNQ-based implementation by using a low-end SoC-FPGA device. We also provide insights into integrating an SoC-FPGA in the acquisition node, which can be valuable in scenarios where stations are deployed solely for data collection and holds the potential for developing an early alert system.
Fil: Mauad Sosa, Yair. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Electrónica; Argentina
Fil: Molina, Romina Soledad. Università degli Studi di Trieste; Italia
Fil: Spagnotto, Silvana Liz. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Geología; Argentina. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis; Argentina
Fil: Fernandez Melchor, Ivan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación en Paleobiología y Geología; Argentina
Fil: Nuñez Manquez, Alejandro Enrique. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Electrónica; Argentina
Fil: Crespo, Maria Liz. Università degli Studi di Trieste; Italia
Fil: Ramponi, Giovanni. Università degli Studi di Trieste; Italia
Fil: Petrino, Ricardo. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Electrónica; Argentina - Materia
-
Copahue Volcano
Machine Learning
Soc FPGA
seismic events - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/231080
Ver los metadatos del registro completo
| id |
CONICETDig_582d5b0cad7d544f86d4e6e8510f577d |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/231080 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Seismic Event Detection in the Copahue Volcano Based on Machine Learning: Towards an On-the-Edge ImplementationMauad Sosa, YairMolina, Romina SoledadSpagnotto, Silvana LizFernandez Melchor, IvanNuñez Manquez, Alejandro EnriqueCrespo, Maria LizRamponi, GiovanniPetrino, RicardoCopahue VolcanoMachine LearningSoc FPGAseismic eventshttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2This study focuses on volcano seismic event detection using machine learning, leveraging the advantages of software/hardware co-design for system on chip (SoC) based on field programmable gate array (FPGA) devices. The case study was the Copahue Volcano, an active stratovolcano located on the border between Argentina and Chile. Volcano seismic event processing and detection were integrated into a PYNQ-based implementation by using a low-end SoC-FPGA device. We also provide insights into integrating an SoC-FPGA in the acquisition node, which can be valuable in scenarios where stations are deployed solely for data collection and holds the potential for developing an early alert system.Fil: Mauad Sosa, Yair. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Electrónica; ArgentinaFil: Molina, Romina Soledad. Università degli Studi di Trieste; ItaliaFil: Spagnotto, Silvana Liz. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Geología; Argentina. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis; ArgentinaFil: Fernandez Melchor, Ivan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación en Paleobiología y Geología; ArgentinaFil: Nuñez Manquez, Alejandro Enrique. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Electrónica; ArgentinaFil: Crespo, Maria Liz. Università degli Studi di Trieste; ItaliaFil: Ramponi, Giovanni. Università degli Studi di Trieste; ItaliaFil: Petrino, Ricardo. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Electrónica; ArgentinaMDPI2024-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/231080Mauad Sosa, Yair; Molina, Romina Soledad; Spagnotto, Silvana Liz; Fernandez Melchor, Ivan; Nuñez Manquez, Alejandro Enrique; et al.; Seismic Event Detection in the Copahue Volcano Based on Machine Learning: Towards an On-the-Edge Implementation; MDPI; Electronics; 13; 3; 2-2024; 1-192079-9292CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2079-9292/13/3/622info:eu-repo/semantics/altIdentifier/doi/10.3390/electronics13030622info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-26T08:44:56Zoai:ri.conicet.gov.ar:11336/231080instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-26 08:44:56.354CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Seismic Event Detection in the Copahue Volcano Based on Machine Learning: Towards an On-the-Edge Implementation |
| title |
Seismic Event Detection in the Copahue Volcano Based on Machine Learning: Towards an On-the-Edge Implementation |
| spellingShingle |
Seismic Event Detection in the Copahue Volcano Based on Machine Learning: Towards an On-the-Edge Implementation Mauad Sosa, Yair Copahue Volcano Machine Learning Soc FPGA seismic events |
| title_short |
Seismic Event Detection in the Copahue Volcano Based on Machine Learning: Towards an On-the-Edge Implementation |
| title_full |
Seismic Event Detection in the Copahue Volcano Based on Machine Learning: Towards an On-the-Edge Implementation |
| title_fullStr |
Seismic Event Detection in the Copahue Volcano Based on Machine Learning: Towards an On-the-Edge Implementation |
| title_full_unstemmed |
Seismic Event Detection in the Copahue Volcano Based on Machine Learning: Towards an On-the-Edge Implementation |
| title_sort |
Seismic Event Detection in the Copahue Volcano Based on Machine Learning: Towards an On-the-Edge Implementation |
| dc.creator.none.fl_str_mv |
Mauad Sosa, Yair Molina, Romina Soledad Spagnotto, Silvana Liz Fernandez Melchor, Ivan Nuñez Manquez, Alejandro Enrique Crespo, Maria Liz Ramponi, Giovanni Petrino, Ricardo |
| author |
Mauad Sosa, Yair |
| author_facet |
Mauad Sosa, Yair Molina, Romina Soledad Spagnotto, Silvana Liz Fernandez Melchor, Ivan Nuñez Manquez, Alejandro Enrique Crespo, Maria Liz Ramponi, Giovanni Petrino, Ricardo |
| author_role |
author |
| author2 |
Molina, Romina Soledad Spagnotto, Silvana Liz Fernandez Melchor, Ivan Nuñez Manquez, Alejandro Enrique Crespo, Maria Liz Ramponi, Giovanni Petrino, Ricardo |
| author2_role |
author author author author author author author |
| dc.subject.none.fl_str_mv |
Copahue Volcano Machine Learning Soc FPGA seismic events |
| topic |
Copahue Volcano Machine Learning Soc FPGA seismic events |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
| dc.description.none.fl_txt_mv |
This study focuses on volcano seismic event detection using machine learning, leveraging the advantages of software/hardware co-design for system on chip (SoC) based on field programmable gate array (FPGA) devices. The case study was the Copahue Volcano, an active stratovolcano located on the border between Argentina and Chile. Volcano seismic event processing and detection were integrated into a PYNQ-based implementation by using a low-end SoC-FPGA device. We also provide insights into integrating an SoC-FPGA in the acquisition node, which can be valuable in scenarios where stations are deployed solely for data collection and holds the potential for developing an early alert system. Fil: Mauad Sosa, Yair. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Electrónica; Argentina Fil: Molina, Romina Soledad. Università degli Studi di Trieste; Italia Fil: Spagnotto, Silvana Liz. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Geología; Argentina. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis; Argentina Fil: Fernandez Melchor, Ivan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación en Paleobiología y Geología; Argentina Fil: Nuñez Manquez, Alejandro Enrique. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Electrónica; Argentina Fil: Crespo, Maria Liz. Università degli Studi di Trieste; Italia Fil: Ramponi, Giovanni. Università degli Studi di Trieste; Italia Fil: Petrino, Ricardo. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Departamento de Electrónica; Argentina |
| description |
This study focuses on volcano seismic event detection using machine learning, leveraging the advantages of software/hardware co-design for system on chip (SoC) based on field programmable gate array (FPGA) devices. The case study was the Copahue Volcano, an active stratovolcano located on the border between Argentina and Chile. Volcano seismic event processing and detection were integrated into a PYNQ-based implementation by using a low-end SoC-FPGA device. We also provide insights into integrating an SoC-FPGA in the acquisition node, which can be valuable in scenarios where stations are deployed solely for data collection and holds the potential for developing an early alert system. |
| publishDate |
2024 |
| dc.date.none.fl_str_mv |
2024-02 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/231080 Mauad Sosa, Yair; Molina, Romina Soledad; Spagnotto, Silvana Liz; Fernandez Melchor, Ivan; Nuñez Manquez, Alejandro Enrique; et al.; Seismic Event Detection in the Copahue Volcano Based on Machine Learning: Towards an On-the-Edge Implementation; MDPI; Electronics; 13; 3; 2-2024; 1-19 2079-9292 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/231080 |
| identifier_str_mv |
Mauad Sosa, Yair; Molina, Romina Soledad; Spagnotto, Silvana Liz; Fernandez Melchor, Ivan; Nuñez Manquez, Alejandro Enrique; et al.; Seismic Event Detection in the Copahue Volcano Based on Machine Learning: Towards an On-the-Edge Implementation; MDPI; Electronics; 13; 3; 2-2024; 1-19 2079-9292 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2079-9292/13/3/622 info:eu-repo/semantics/altIdentifier/doi/10.3390/electronics13030622 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
MDPI |
| publisher.none.fl_str_mv |
MDPI |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1849872427155193856 |
| score |
13.011256 |