Advanced glycation endproducts interfere with integrin-mediated osteoblastic attachment to a type-I collagen matrix

Autores
McCarthy, Antonio Desmond; Uemura, Toshimasa; Etcheverry, Susana Beatriz; Cortizo, Ana María
Año de publicación
2004
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The adhesion of osteoblasts to bone extracellular matrix, of which type-I collagen constitutes >85%, can modulate diverse aspects of their physiology such as growth, differentiation and mineralisation. In this study we examined the adhesion of UMR106 rat osteoblast-like cells either to a control (Col) or advanced-glycation-endproduct-modified (AGEs-Col) type I collagen matrix. We investigated the possible role of different integrin receptors in osteoblastic adhesion, by co-incubating these cells either with β-peptide (conserved sequence 113–125 of the β subunit of integrins) or with two other peptides, RGD (Arg-Gly-Asp) and DGEA (Asp-Gly-Glu-Ala), which are recognition sequences for the α-subunits of α1,5β1and α2β1integrins. Collagen glycation inhibited the adhesion of UMR106 osteoblasts to the matrix (40% reduction versus Col,P<0.001). β-Peptide showed a dose- and glycation-dependent inhibitory effect on adhesion, and at a concentration of 100μM decreased the attachment of UMR106 cells to both matrices (42% to Col,P<0.001; and 25% to AGEs-Col,P<0.01). The synthetic peptides RGD (1mM) and DGEA (5mM) inhibited the attachment of UMR106 cells to Col (30 and 20%,P<0.01 andP<0.001, respectively), but not to AGEs-Col. β-Peptide induced an increase in UMR106 cell clumping and a decrease in cellular spreading, while DGEA increased spreading with cellular extensions in multiple directions. These results indicate that both α and β integrin subunits participate in osteoblastic attachment to type-I collagen, probably through the α1,5β1and α2β1integrins. AGEs-modification of type-I collagen impairs the integrin-mediated adhesion of osteoblastic cells to the matrix, and could thus contribute to the pathogenesis of diabetic osteopenia.
Laboratorio de Investigación en Osteopatías y Metabolismo Mineral
Materia
Química
Advanced glycation endproducts
Osteoblast
Adhesion
Integrin receptors
Type-I collagen
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/100327

id SEDICI_258308459233964925a659d8eb4f2652
oai_identifier_str oai:sedici.unlp.edu.ar:10915/100327
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Advanced glycation endproducts interfere with integrin-mediated osteoblastic attachment to a type-I collagen matrixMcCarthy, Antonio DesmondUemura, ToshimasaEtcheverry, Susana BeatrizCortizo, Ana MaríaQuímicaAdvanced glycation endproductsOsteoblastAdhesionIntegrin receptorsType-I collagenThe adhesion of osteoblasts to bone extracellular matrix, of which type-I collagen constitutes >85%, can modulate diverse aspects of their physiology such as growth, differentiation and mineralisation. In this study we examined the adhesion of UMR106 rat osteoblast-like cells either to a control (Col) or advanced-glycation-endproduct-modified (AGEs-Col) type I collagen matrix. We investigated the possible role of different integrin receptors in osteoblastic adhesion, by co-incubating these cells either with β-peptide (conserved sequence 113–125 of the β subunit of integrins) or with two other peptides, RGD (Arg-Gly-Asp) and DGEA (Asp-Gly-Glu-Ala), which are recognition sequences for the α-subunits of α1,5β1and α2β1integrins. Collagen glycation inhibited the adhesion of UMR106 osteoblasts to the matrix (40% reduction versus Col,P<0.001). β-Peptide showed a dose- and glycation-dependent inhibitory effect on adhesion, and at a concentration of 100μM decreased the attachment of UMR106 cells to both matrices (42% to Col,P<0.001; and 25% to AGEs-Col,P<0.01). The synthetic peptides RGD (1mM) and DGEA (5mM) inhibited the attachment of UMR106 cells to Col (30 and 20%,P<0.01 andP<0.001, respectively), but not to AGEs-Col. β-Peptide induced an increase in UMR106 cell clumping and a decrease in cellular spreading, while DGEA increased spreading with cellular extensions in multiple directions. These results indicate that both α and β integrin subunits participate in osteoblastic attachment to type-I collagen, probably through the α1,5β1and α2β1integrins. AGEs-modification of type-I collagen impairs the integrin-mediated adhesion of osteoblastic cells to the matrix, and could thus contribute to the pathogenesis of diabetic osteopenia.Laboratorio de Investigación en Osteopatías y Metabolismo Mineral2004info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf840-848http://sedici.unlp.edu.ar/handle/10915/100327enginfo:eu-repo/semantics/altIdentifier/issn/1357-2725info:eu-repo/semantics/altIdentifier/hdl/11746/4897info:eu-repo/semantics/altIdentifier/doi/10.1016/j.biocel.2003.09.006info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T11:13:43Zoai:sedici.unlp.edu.ar:10915/100327Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 11:13:44.099SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Advanced glycation endproducts interfere with integrin-mediated osteoblastic attachment to a type-I collagen matrix
title Advanced glycation endproducts interfere with integrin-mediated osteoblastic attachment to a type-I collagen matrix
spellingShingle Advanced glycation endproducts interfere with integrin-mediated osteoblastic attachment to a type-I collagen matrix
McCarthy, Antonio Desmond
Química
Advanced glycation endproducts
Osteoblast
Adhesion
Integrin receptors
Type-I collagen
title_short Advanced glycation endproducts interfere with integrin-mediated osteoblastic attachment to a type-I collagen matrix
title_full Advanced glycation endproducts interfere with integrin-mediated osteoblastic attachment to a type-I collagen matrix
title_fullStr Advanced glycation endproducts interfere with integrin-mediated osteoblastic attachment to a type-I collagen matrix
title_full_unstemmed Advanced glycation endproducts interfere with integrin-mediated osteoblastic attachment to a type-I collagen matrix
title_sort Advanced glycation endproducts interfere with integrin-mediated osteoblastic attachment to a type-I collagen matrix
dc.creator.none.fl_str_mv McCarthy, Antonio Desmond
Uemura, Toshimasa
Etcheverry, Susana Beatriz
Cortizo, Ana María
author McCarthy, Antonio Desmond
author_facet McCarthy, Antonio Desmond
Uemura, Toshimasa
Etcheverry, Susana Beatriz
Cortizo, Ana María
author_role author
author2 Uemura, Toshimasa
Etcheverry, Susana Beatriz
Cortizo, Ana María
author2_role author
author
author
dc.subject.none.fl_str_mv Química
Advanced glycation endproducts
Osteoblast
Adhesion
Integrin receptors
Type-I collagen
topic Química
Advanced glycation endproducts
Osteoblast
Adhesion
Integrin receptors
Type-I collagen
dc.description.none.fl_txt_mv The adhesion of osteoblasts to bone extracellular matrix, of which type-I collagen constitutes >85%, can modulate diverse aspects of their physiology such as growth, differentiation and mineralisation. In this study we examined the adhesion of UMR106 rat osteoblast-like cells either to a control (Col) or advanced-glycation-endproduct-modified (AGEs-Col) type I collagen matrix. We investigated the possible role of different integrin receptors in osteoblastic adhesion, by co-incubating these cells either with β-peptide (conserved sequence 113–125 of the β subunit of integrins) or with two other peptides, RGD (Arg-Gly-Asp) and DGEA (Asp-Gly-Glu-Ala), which are recognition sequences for the α-subunits of α1,5β1and α2β1integrins. Collagen glycation inhibited the adhesion of UMR106 osteoblasts to the matrix (40% reduction versus Col,P<0.001). β-Peptide showed a dose- and glycation-dependent inhibitory effect on adhesion, and at a concentration of 100μM decreased the attachment of UMR106 cells to both matrices (42% to Col,P<0.001; and 25% to AGEs-Col,P<0.01). The synthetic peptides RGD (1mM) and DGEA (5mM) inhibited the attachment of UMR106 cells to Col (30 and 20%,P<0.01 andP<0.001, respectively), but not to AGEs-Col. β-Peptide induced an increase in UMR106 cell clumping and a decrease in cellular spreading, while DGEA increased spreading with cellular extensions in multiple directions. These results indicate that both α and β integrin subunits participate in osteoblastic attachment to type-I collagen, probably through the α1,5β1and α2β1integrins. AGEs-modification of type-I collagen impairs the integrin-mediated adhesion of osteoblastic cells to the matrix, and could thus contribute to the pathogenesis of diabetic osteopenia.
Laboratorio de Investigación en Osteopatías y Metabolismo Mineral
description The adhesion of osteoblasts to bone extracellular matrix, of which type-I collagen constitutes >85%, can modulate diverse aspects of their physiology such as growth, differentiation and mineralisation. In this study we examined the adhesion of UMR106 rat osteoblast-like cells either to a control (Col) or advanced-glycation-endproduct-modified (AGEs-Col) type I collagen matrix. We investigated the possible role of different integrin receptors in osteoblastic adhesion, by co-incubating these cells either with β-peptide (conserved sequence 113–125 of the β subunit of integrins) or with two other peptides, RGD (Arg-Gly-Asp) and DGEA (Asp-Gly-Glu-Ala), which are recognition sequences for the α-subunits of α1,5β1and α2β1integrins. Collagen glycation inhibited the adhesion of UMR106 osteoblasts to the matrix (40% reduction versus Col,P<0.001). β-Peptide showed a dose- and glycation-dependent inhibitory effect on adhesion, and at a concentration of 100μM decreased the attachment of UMR106 cells to both matrices (42% to Col,P<0.001; and 25% to AGEs-Col,P<0.01). The synthetic peptides RGD (1mM) and DGEA (5mM) inhibited the attachment of UMR106 cells to Col (30 and 20%,P<0.01 andP<0.001, respectively), but not to AGEs-Col. β-Peptide induced an increase in UMR106 cell clumping and a decrease in cellular spreading, while DGEA increased spreading with cellular extensions in multiple directions. These results indicate that both α and β integrin subunits participate in osteoblastic attachment to type-I collagen, probably through the α1,5β1and α2β1integrins. AGEs-modification of type-I collagen impairs the integrin-mediated adhesion of osteoblastic cells to the matrix, and could thus contribute to the pathogenesis of diabetic osteopenia.
publishDate 2004
dc.date.none.fl_str_mv 2004
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/100327
url http://sedici.unlp.edu.ar/handle/10915/100327
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/1357-2725
info:eu-repo/semantics/altIdentifier/hdl/11746/4897
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.biocel.2003.09.006
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
840-848
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846064195325394944
score 13.22299