A CPU–GPU framework for optimizing the quality of large meshes

Autores
D'amato, Juan Pablo; Venere, Marcelo
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The automatic generation of 3D finite element meshes (FEM) is still a bottle neck for the simulation of large fluid-dynamic problems. Although today there are several algorithms that can generate good meshes without user intervention, in cases where the geometry changes during the calculation and thousands of meshes must be constructed, the computational cost of this process can exceed the cost of the FEM. There has been a lot of work in FEM parallelization and the algorithms work well in different parallel architectures, but at present there has not been much success in the parallelization of mesh generation methods. This paper will present a massive parallelization scheme for re-meshing with tetrahedral elements using the local modification algorithm. This method is frequently used to improve the quality of elements once the mesh has been generated, but we will show it can also be applied as a re-generation process, starting with the distorted and invalid mesh of the previous step. The parallelization is carried out using OpenCL and OpenMP in order to test the method in multiple CPU architecture and also in Graphic Processors (GPU). Finally we present the speedup and quality results obtained in meshes with hundreds of thousands of elements and different parallel APIs.
Fil: D'amato, Juan Pablo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil; Argentina
Fil: Venere, Marcelo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados; Argentina. Comision Nacional de Energia Atomica. Gerencia Quimica. CAC; Argentina
Materia
Parallelism
Re-Meshing
Quality
Gpu
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/6967

id CONICETDig_c84b64d96d115df4b70269113cae99cb
oai_identifier_str oai:ri.conicet.gov.ar:11336/6967
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A CPU–GPU framework for optimizing the quality of large meshesD'amato, Juan PabloVenere, MarceloParallelismRe-MeshingQualityGpuhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1The automatic generation of 3D finite element meshes (FEM) is still a bottle neck for the simulation of large fluid-dynamic problems. Although today there are several algorithms that can generate good meshes without user intervention, in cases where the geometry changes during the calculation and thousands of meshes must be constructed, the computational cost of this process can exceed the cost of the FEM. There has been a lot of work in FEM parallelization and the algorithms work well in different parallel architectures, but at present there has not been much success in the parallelization of mesh generation methods. This paper will present a massive parallelization scheme for re-meshing with tetrahedral elements using the local modification algorithm. This method is frequently used to improve the quality of elements once the mesh has been generated, but we will show it can also be applied as a re-generation process, starting with the distorted and invalid mesh of the previous step. The parallelization is carried out using OpenCL and OpenMP in order to test the method in multiple CPU architecture and also in Graphic Processors (GPU). Finally we present the speedup and quality results obtained in meshes with hundreds of thousands of elements and different parallel APIs.Fil: D'amato, Juan Pablo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil; ArgentinaFil: Venere, Marcelo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados; Argentina. Comision Nacional de Energia Atomica. Gerencia Quimica. CAC; ArgentinaElsevier2013-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/6967D'amato, Juan Pablo; Venere, Marcelo; A CPU–GPU framework for optimizing the quality of large meshes; Elsevier; Journal Of Parallel And Distributed Computing; 73; 8; 3-2013; 1127-11340743-7315enginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jpdc.2013.03.007info:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0743731513000518info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:26:37Zoai:ri.conicet.gov.ar:11336/6967instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:26:38.184CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A CPU–GPU framework for optimizing the quality of large meshes
title A CPU–GPU framework for optimizing the quality of large meshes
spellingShingle A CPU–GPU framework for optimizing the quality of large meshes
D'amato, Juan Pablo
Parallelism
Re-Meshing
Quality
Gpu
title_short A CPU–GPU framework for optimizing the quality of large meshes
title_full A CPU–GPU framework for optimizing the quality of large meshes
title_fullStr A CPU–GPU framework for optimizing the quality of large meshes
title_full_unstemmed A CPU–GPU framework for optimizing the quality of large meshes
title_sort A CPU–GPU framework for optimizing the quality of large meshes
dc.creator.none.fl_str_mv D'amato, Juan Pablo
Venere, Marcelo
author D'amato, Juan Pablo
author_facet D'amato, Juan Pablo
Venere, Marcelo
author_role author
author2 Venere, Marcelo
author2_role author
dc.subject.none.fl_str_mv Parallelism
Re-Meshing
Quality
Gpu
topic Parallelism
Re-Meshing
Quality
Gpu
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The automatic generation of 3D finite element meshes (FEM) is still a bottle neck for the simulation of large fluid-dynamic problems. Although today there are several algorithms that can generate good meshes without user intervention, in cases where the geometry changes during the calculation and thousands of meshes must be constructed, the computational cost of this process can exceed the cost of the FEM. There has been a lot of work in FEM parallelization and the algorithms work well in different parallel architectures, but at present there has not been much success in the parallelization of mesh generation methods. This paper will present a massive parallelization scheme for re-meshing with tetrahedral elements using the local modification algorithm. This method is frequently used to improve the quality of elements once the mesh has been generated, but we will show it can also be applied as a re-generation process, starting with the distorted and invalid mesh of the previous step. The parallelization is carried out using OpenCL and OpenMP in order to test the method in multiple CPU architecture and also in Graphic Processors (GPU). Finally we present the speedup and quality results obtained in meshes with hundreds of thousands of elements and different parallel APIs.
Fil: D'amato, Juan Pablo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil; Argentina
Fil: Venere, Marcelo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados; Argentina. Comision Nacional de Energia Atomica. Gerencia Quimica. CAC; Argentina
description The automatic generation of 3D finite element meshes (FEM) is still a bottle neck for the simulation of large fluid-dynamic problems. Although today there are several algorithms that can generate good meshes without user intervention, in cases where the geometry changes during the calculation and thousands of meshes must be constructed, the computational cost of this process can exceed the cost of the FEM. There has been a lot of work in FEM parallelization and the algorithms work well in different parallel architectures, but at present there has not been much success in the parallelization of mesh generation methods. This paper will present a massive parallelization scheme for re-meshing with tetrahedral elements using the local modification algorithm. This method is frequently used to improve the quality of elements once the mesh has been generated, but we will show it can also be applied as a re-generation process, starting with the distorted and invalid mesh of the previous step. The parallelization is carried out using OpenCL and OpenMP in order to test the method in multiple CPU architecture and also in Graphic Processors (GPU). Finally we present the speedup and quality results obtained in meshes with hundreds of thousands of elements and different parallel APIs.
publishDate 2013
dc.date.none.fl_str_mv 2013-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/6967
D'amato, Juan Pablo; Venere, Marcelo; A CPU–GPU framework for optimizing the quality of large meshes; Elsevier; Journal Of Parallel And Distributed Computing; 73; 8; 3-2013; 1127-1134
0743-7315
url http://hdl.handle.net/11336/6967
identifier_str_mv D'amato, Juan Pablo; Venere, Marcelo; A CPU–GPU framework for optimizing the quality of large meshes; Elsevier; Journal Of Parallel And Distributed Computing; 73; 8; 3-2013; 1127-1134
0743-7315
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jpdc.2013.03.007
info:eu-repo/semantics/altIdentifier/doi/
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0743731513000518
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846781826460286976
score 12.982451