A CPU–GPU framework for optimizing the quality of large meshes
- Autores
- D'amato, Juan Pablo; Venere, Marcelo
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The automatic generation of 3D finite element meshes (FEM) is still a bottle neck for the simulation of large fluid-dynamic problems. Although today there are several algorithms that can generate good meshes without user intervention, in cases where the geometry changes during the calculation and thousands of meshes must be constructed, the computational cost of this process can exceed the cost of the FEM. There has been a lot of work in FEM parallelization and the algorithms work well in different parallel architectures, but at present there has not been much success in the parallelization of mesh generation methods. This paper will present a massive parallelization scheme for re-meshing with tetrahedral elements using the local modification algorithm. This method is frequently used to improve the quality of elements once the mesh has been generated, but we will show it can also be applied as a re-generation process, starting with the distorted and invalid mesh of the previous step. The parallelization is carried out using OpenCL and OpenMP in order to test the method in multiple CPU architecture and also in Graphic Processors (GPU). Finally we present the speedup and quality results obtained in meshes with hundreds of thousands of elements and different parallel APIs.
Fil: D'amato, Juan Pablo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil; Argentina
Fil: Venere, Marcelo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados; Argentina. Comision Nacional de Energia Atomica. Gerencia Quimica. CAC; Argentina - Materia
-
Parallelism
Re-Meshing
Quality
Gpu - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/6967
Ver los metadatos del registro completo
| id |
CONICETDig_c84b64d96d115df4b70269113cae99cb |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/6967 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
A CPU–GPU framework for optimizing the quality of large meshesD'amato, Juan PabloVenere, MarceloParallelismRe-MeshingQualityGpuhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1The automatic generation of 3D finite element meshes (FEM) is still a bottle neck for the simulation of large fluid-dynamic problems. Although today there are several algorithms that can generate good meshes without user intervention, in cases where the geometry changes during the calculation and thousands of meshes must be constructed, the computational cost of this process can exceed the cost of the FEM. There has been a lot of work in FEM parallelization and the algorithms work well in different parallel architectures, but at present there has not been much success in the parallelization of mesh generation methods. This paper will present a massive parallelization scheme for re-meshing with tetrahedral elements using the local modification algorithm. This method is frequently used to improve the quality of elements once the mesh has been generated, but we will show it can also be applied as a re-generation process, starting with the distorted and invalid mesh of the previous step. The parallelization is carried out using OpenCL and OpenMP in order to test the method in multiple CPU architecture and also in Graphic Processors (GPU). Finally we present the speedup and quality results obtained in meshes with hundreds of thousands of elements and different parallel APIs.Fil: D'amato, Juan Pablo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil; ArgentinaFil: Venere, Marcelo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados; Argentina. Comision Nacional de Energia Atomica. Gerencia Quimica. CAC; ArgentinaElsevier2013-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/6967D'amato, Juan Pablo; Venere, Marcelo; A CPU–GPU framework for optimizing the quality of large meshes; Elsevier; Journal Of Parallel And Distributed Computing; 73; 8; 3-2013; 1127-11340743-7315enginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jpdc.2013.03.007info:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0743731513000518info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:26:37Zoai:ri.conicet.gov.ar:11336/6967instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:26:38.184CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
A CPU–GPU framework for optimizing the quality of large meshes |
| title |
A CPU–GPU framework for optimizing the quality of large meshes |
| spellingShingle |
A CPU–GPU framework for optimizing the quality of large meshes D'amato, Juan Pablo Parallelism Re-Meshing Quality Gpu |
| title_short |
A CPU–GPU framework for optimizing the quality of large meshes |
| title_full |
A CPU–GPU framework for optimizing the quality of large meshes |
| title_fullStr |
A CPU–GPU framework for optimizing the quality of large meshes |
| title_full_unstemmed |
A CPU–GPU framework for optimizing the quality of large meshes |
| title_sort |
A CPU–GPU framework for optimizing the quality of large meshes |
| dc.creator.none.fl_str_mv |
D'amato, Juan Pablo Venere, Marcelo |
| author |
D'amato, Juan Pablo |
| author_facet |
D'amato, Juan Pablo Venere, Marcelo |
| author_role |
author |
| author2 |
Venere, Marcelo |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
Parallelism Re-Meshing Quality Gpu |
| topic |
Parallelism Re-Meshing Quality Gpu |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
The automatic generation of 3D finite element meshes (FEM) is still a bottle neck for the simulation of large fluid-dynamic problems. Although today there are several algorithms that can generate good meshes without user intervention, in cases where the geometry changes during the calculation and thousands of meshes must be constructed, the computational cost of this process can exceed the cost of the FEM. There has been a lot of work in FEM parallelization and the algorithms work well in different parallel architectures, but at present there has not been much success in the parallelization of mesh generation methods. This paper will present a massive parallelization scheme for re-meshing with tetrahedral elements using the local modification algorithm. This method is frequently used to improve the quality of elements once the mesh has been generated, but we will show it can also be applied as a re-generation process, starting with the distorted and invalid mesh of the previous step. The parallelization is carried out using OpenCL and OpenMP in order to test the method in multiple CPU architecture and also in Graphic Processors (GPU). Finally we present the speedup and quality results obtained in meshes with hundreds of thousands of elements and different parallel APIs. Fil: D'amato, Juan Pablo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil; Argentina Fil: Venere, Marcelo. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Grupo de Plasmas Densos Magnetizados; Argentina. Comision Nacional de Energia Atomica. Gerencia Quimica. CAC; Argentina |
| description |
The automatic generation of 3D finite element meshes (FEM) is still a bottle neck for the simulation of large fluid-dynamic problems. Although today there are several algorithms that can generate good meshes without user intervention, in cases where the geometry changes during the calculation and thousands of meshes must be constructed, the computational cost of this process can exceed the cost of the FEM. There has been a lot of work in FEM parallelization and the algorithms work well in different parallel architectures, but at present there has not been much success in the parallelization of mesh generation methods. This paper will present a massive parallelization scheme for re-meshing with tetrahedral elements using the local modification algorithm. This method is frequently used to improve the quality of elements once the mesh has been generated, but we will show it can also be applied as a re-generation process, starting with the distorted and invalid mesh of the previous step. The parallelization is carried out using OpenCL and OpenMP in order to test the method in multiple CPU architecture and also in Graphic Processors (GPU). Finally we present the speedup and quality results obtained in meshes with hundreds of thousands of elements and different parallel APIs. |
| publishDate |
2013 |
| dc.date.none.fl_str_mv |
2013-03 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/6967 D'amato, Juan Pablo; Venere, Marcelo; A CPU–GPU framework for optimizing the quality of large meshes; Elsevier; Journal Of Parallel And Distributed Computing; 73; 8; 3-2013; 1127-1134 0743-7315 |
| url |
http://hdl.handle.net/11336/6967 |
| identifier_str_mv |
D'amato, Juan Pablo; Venere, Marcelo; A CPU–GPU framework for optimizing the quality of large meshes; Elsevier; Journal Of Parallel And Distributed Computing; 73; 8; 3-2013; 1127-1134 0743-7315 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jpdc.2013.03.007 info:eu-repo/semantics/altIdentifier/doi/ info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0743731513000518 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Elsevier |
| publisher.none.fl_str_mv |
Elsevier |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846781826460286976 |
| score |
12.982451 |