Ionic mass transfer on fixed disk and conical electrodes under streaming solutions : I. Theoretical approach

Autores
Marchiano, Susana Lucy; Arvia, Alejandro Jorge
Año de publicación
1967
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A solution of the convective-diffusion differential equation for the case of disk and conical electrodes axially placed in laminar flow is attempted. The integration of the equations is done with an approximate streaming function which is valid for values of the function up to 0·3 within an error of one per cent. The rate equation for a steady convective-diffusion process on the disk electrode is [fórmula en el documento]. The type of solution is then extended to the case of conical electrodes with axial symmetry. A similar equation is thus obtained and the numerical coefficients for the average rate equation are in agreement with the one of the above equation, within 4 per cent, and are independent of the cone angle. The latter result agrees also with a previous equation deduced by analogy with the corresponding heat-transfer problem.
Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas
Materia
Ciencias Exactas
Química
Ionic mass transfer
Conical electrodes
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/121437

id SEDICI_1ceea6062e9ecad6ac9318e53ace3aaa
oai_identifier_str oai:sedici.unlp.edu.ar:10915/121437
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Ionic mass transfer on fixed disk and conical electrodes under streaming solutions : I. Theoretical approachMarchiano, Susana LucyArvia, Alejandro JorgeCiencias ExactasQuímicaIonic mass transferConical electrodesA solution of the convective-diffusion differential equation for the case of disk and conical electrodes axially placed in laminar flow is attempted. The integration of the equations is done with an approximate streaming function which is valid for values of the function up to 0·3 within an error of one per cent. The rate equation for a steady convective-diffusion process on the disk electrode is [fórmula en el documento]. The type of solution is then extended to the case of conical electrodes with axial symmetry. A similar equation is thus obtained and the numerical coefficients for the average rate equation are in agreement with the one of the above equation, within 4 per cent, and are independent of the cone angle. The latter result agrees also with a previous equation deduced by analogy with the corresponding heat-transfer problem.Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas1967info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf801-808http://sedici.unlp.edu.ar/handle/10915/121437enginfo:eu-repo/semantics/altIdentifier/issn/0013-4686info:eu-repo/semantics/altIdentifier/doi/10.1016/0013-4686(67)80117-8info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:28:50Zoai:sedici.unlp.edu.ar:10915/121437Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:28:50.289SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Ionic mass transfer on fixed disk and conical electrodes under streaming solutions : I. Theoretical approach
title Ionic mass transfer on fixed disk and conical electrodes under streaming solutions : I. Theoretical approach
spellingShingle Ionic mass transfer on fixed disk and conical electrodes under streaming solutions : I. Theoretical approach
Marchiano, Susana Lucy
Ciencias Exactas
Química
Ionic mass transfer
Conical electrodes
title_short Ionic mass transfer on fixed disk and conical electrodes under streaming solutions : I. Theoretical approach
title_full Ionic mass transfer on fixed disk and conical electrodes under streaming solutions : I. Theoretical approach
title_fullStr Ionic mass transfer on fixed disk and conical electrodes under streaming solutions : I. Theoretical approach
title_full_unstemmed Ionic mass transfer on fixed disk and conical electrodes under streaming solutions : I. Theoretical approach
title_sort Ionic mass transfer on fixed disk and conical electrodes under streaming solutions : I. Theoretical approach
dc.creator.none.fl_str_mv Marchiano, Susana Lucy
Arvia, Alejandro Jorge
author Marchiano, Susana Lucy
author_facet Marchiano, Susana Lucy
Arvia, Alejandro Jorge
author_role author
author2 Arvia, Alejandro Jorge
author2_role author
dc.subject.none.fl_str_mv Ciencias Exactas
Química
Ionic mass transfer
Conical electrodes
topic Ciencias Exactas
Química
Ionic mass transfer
Conical electrodes
dc.description.none.fl_txt_mv A solution of the convective-diffusion differential equation for the case of disk and conical electrodes axially placed in laminar flow is attempted. The integration of the equations is done with an approximate streaming function which is valid for values of the function up to 0·3 within an error of one per cent. The rate equation for a steady convective-diffusion process on the disk electrode is [fórmula en el documento]. The type of solution is then extended to the case of conical electrodes with axial symmetry. A similar equation is thus obtained and the numerical coefficients for the average rate equation are in agreement with the one of the above equation, within 4 per cent, and are independent of the cone angle. The latter result agrees also with a previous equation deduced by analogy with the corresponding heat-transfer problem.
Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas
description A solution of the convective-diffusion differential equation for the case of disk and conical electrodes axially placed in laminar flow is attempted. The integration of the equations is done with an approximate streaming function which is valid for values of the function up to 0·3 within an error of one per cent. The rate equation for a steady convective-diffusion process on the disk electrode is [fórmula en el documento]. The type of solution is then extended to the case of conical electrodes with axial symmetry. A similar equation is thus obtained and the numerical coefficients for the average rate equation are in agreement with the one of the above equation, within 4 per cent, and are independent of the cone angle. The latter result agrees also with a previous equation deduced by analogy with the corresponding heat-transfer problem.
publishDate 1967
dc.date.none.fl_str_mv 1967
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/121437
url http://sedici.unlp.edu.ar/handle/10915/121437
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/0013-4686
info:eu-repo/semantics/altIdentifier/doi/10.1016/0013-4686(67)80117-8
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
dc.format.none.fl_str_mv application/pdf
801-808
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616166879789056
score 13.070432