Ionic mass transfer on fixed disk and conical electrodes under streaming solutions : I. Theoretical approach
- Autores
- Marchiano, Susana Lucy; Arvia, Alejandro Jorge
- Año de publicación
- 1967
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A solution of the convective-diffusion differential equation for the case of disk and conical electrodes axially placed in laminar flow is attempted. The integration of the equations is done with an approximate streaming function which is valid for values of the function up to 0·3 within an error of one per cent. The rate equation for a steady convective-diffusion process on the disk electrode is [fórmula en el documento]. The type of solution is then extended to the case of conical electrodes with axial symmetry. A similar equation is thus obtained and the numerical coefficients for the average rate equation are in agreement with the one of the above equation, within 4 per cent, and are independent of the cone angle. The latter result agrees also with a previous equation deduced by analogy with the corresponding heat-transfer problem.
Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas - Materia
-
Ciencias Exactas
Química
Ionic mass transfer
Conical electrodes - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/121437
Ver los metadatos del registro completo
id |
SEDICI_1ceea6062e9ecad6ac9318e53ace3aaa |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/121437 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Ionic mass transfer on fixed disk and conical electrodes under streaming solutions : I. Theoretical approachMarchiano, Susana LucyArvia, Alejandro JorgeCiencias ExactasQuímicaIonic mass transferConical electrodesA solution of the convective-diffusion differential equation for the case of disk and conical electrodes axially placed in laminar flow is attempted. The integration of the equations is done with an approximate streaming function which is valid for values of the function up to 0·3 within an error of one per cent. The rate equation for a steady convective-diffusion process on the disk electrode is [fórmula en el documento]. The type of solution is then extended to the case of conical electrodes with axial symmetry. A similar equation is thus obtained and the numerical coefficients for the average rate equation are in agreement with the one of the above equation, within 4 per cent, and are independent of the cone angle. The latter result agrees also with a previous equation deduced by analogy with the corresponding heat-transfer problem.Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas1967info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf801-808http://sedici.unlp.edu.ar/handle/10915/121437enginfo:eu-repo/semantics/altIdentifier/issn/0013-4686info:eu-repo/semantics/altIdentifier/doi/10.1016/0013-4686(67)80117-8info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:28:50Zoai:sedici.unlp.edu.ar:10915/121437Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:28:50.289SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Ionic mass transfer on fixed disk and conical electrodes under streaming solutions : I. Theoretical approach |
title |
Ionic mass transfer on fixed disk and conical electrodes under streaming solutions : I. Theoretical approach |
spellingShingle |
Ionic mass transfer on fixed disk and conical electrodes under streaming solutions : I. Theoretical approach Marchiano, Susana Lucy Ciencias Exactas Química Ionic mass transfer Conical electrodes |
title_short |
Ionic mass transfer on fixed disk and conical electrodes under streaming solutions : I. Theoretical approach |
title_full |
Ionic mass transfer on fixed disk and conical electrodes under streaming solutions : I. Theoretical approach |
title_fullStr |
Ionic mass transfer on fixed disk and conical electrodes under streaming solutions : I. Theoretical approach |
title_full_unstemmed |
Ionic mass transfer on fixed disk and conical electrodes under streaming solutions : I. Theoretical approach |
title_sort |
Ionic mass transfer on fixed disk and conical electrodes under streaming solutions : I. Theoretical approach |
dc.creator.none.fl_str_mv |
Marchiano, Susana Lucy Arvia, Alejandro Jorge |
author |
Marchiano, Susana Lucy |
author_facet |
Marchiano, Susana Lucy Arvia, Alejandro Jorge |
author_role |
author |
author2 |
Arvia, Alejandro Jorge |
author2_role |
author |
dc.subject.none.fl_str_mv |
Ciencias Exactas Química Ionic mass transfer Conical electrodes |
topic |
Ciencias Exactas Química Ionic mass transfer Conical electrodes |
dc.description.none.fl_txt_mv |
A solution of the convective-diffusion differential equation for the case of disk and conical electrodes axially placed in laminar flow is attempted. The integration of the equations is done with an approximate streaming function which is valid for values of the function up to 0·3 within an error of one per cent. The rate equation for a steady convective-diffusion process on the disk electrode is [fórmula en el documento]. The type of solution is then extended to the case of conical electrodes with axial symmetry. A similar equation is thus obtained and the numerical coefficients for the average rate equation are in agreement with the one of the above equation, within 4 per cent, and are independent of the cone angle. The latter result agrees also with a previous equation deduced by analogy with the corresponding heat-transfer problem. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas |
description |
A solution of the convective-diffusion differential equation for the case of disk and conical electrodes axially placed in laminar flow is attempted. The integration of the equations is done with an approximate streaming function which is valid for values of the function up to 0·3 within an error of one per cent. The rate equation for a steady convective-diffusion process on the disk electrode is [fórmula en el documento]. The type of solution is then extended to the case of conical electrodes with axial symmetry. A similar equation is thus obtained and the numerical coefficients for the average rate equation are in agreement with the one of the above equation, within 4 per cent, and are independent of the cone angle. The latter result agrees also with a previous equation deduced by analogy with the corresponding heat-transfer problem. |
publishDate |
1967 |
dc.date.none.fl_str_mv |
1967 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/121437 |
url |
http://sedici.unlp.edu.ar/handle/10915/121437 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/0013-4686 info:eu-repo/semantics/altIdentifier/doi/10.1016/0013-4686(67)80117-8 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
dc.format.none.fl_str_mv |
application/pdf 801-808 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616166879789056 |
score |
13.070432 |