Aislamiento, purificación y caracterización de las endopeptidasas cisteínicas presentes en frutos de Pseudananas macrodontes (Morr.) Harms (Bromeliaceae)

Autores
Brullo, Adriana
Año de publicación
2003
Idioma
español castellano
Tipo de recurso
tesis doctoral
Estado
versión aceptada
Colaborador/a o director/a de tesis
Caffini, Néstor Oscar
Natalucci, Claudia Luisa
Descripción
Si bien las enzimas proteolíticas se hallan presentes en todas las células, en los organismos multicelulares de mayor complejidad suelen no tener una distribución uniforme y con frecuencia algunos tejidos y órganos las contienen en elevada concentración. Dadas las múltiples aplicaciones industriales de este tipo de enzimas, la detección de nuevas fuentes de proteasas a partir de recursos naturales renovables sigue siendo un tema de gran atractivo dentro del campo de la Química de Productos Naturales. En esta línea de razonamiento, la selección de nuevos materiales dentro de las plantas superiores tuvo que basarse necesariamente tanto en la información fitoquímica preexistente como en los aportes que la Fisiología y la Bioquímica Vegetales han realizado en cuanto a las funciones biológicas que desempeñan o se les atribuyen a las peptidasas en las células que las contienen y en los organismos de los que forman parte. Aún cuando el número de especies estudiadas con el propósito antes mencionado sigue siendo muy reducido (bastante menos del 1% de las especies conocidas), los datos de los que se dispone brindan una razonable orientación en cuanto a materiales vegetales que pueden resultar fuente promisoria de nuevas peptidasas. Si bien no en todos los casos, el contenido de los tubos laticíferos suele ser rico en este tipo de sustancias, a tal punto que la mayoría de las fitopeptidasas conocidas provienen de especies pertenecientes a familias caracterizadas por producir látex: Asclepiadaceae, Apocynaceae, Caricaceae, Euphorbiaceae y Moraceae, entre otras. Por otra parte, así como la presencia de látex no garantiza la existencia de enzimas proteolíticas, su ausencia tampoco descarta la posibilidad de hallarlas en especies pertenecientes a familias “no laticíferas”, como lo demuestra su hallazgo en Asteraceae, Bromeliaceae, Cucurbitaceae y Fabaceae, por citar los casos más conocidos. Parece más allá de toda duda que el desarrollo de la capacidad de producción de peptidasas en alta concentración tiene claras implicancias evolutivas. En el caso de la familia Bromeliaceae dicha capacidad parece estar restringida a sólo una de las tres subfamilias que la componen: las Bromelioideae, hecho en el que basamos nuestra hipótesis de trabajo al seleccionar los frutos de Pseudananas macrodontes (Morr.) Harms (n.v. “ihvirá”, “falso ananá”) como material de estudio de nuevas fuentes de fitopeptidasas. Una vez seleccionado el material y comprobada que fue la presencia de enzimas proteolíticas, resultó necesario establecer el procedimiento de extracción que permitiera obtener la mayor cantidad de proteína activa y al mismo tiempo preservar la integridad funcional de la misma, de modo de disponer de suficiente material de estudio y, además, que el mismo fuera representativo del estado en el que se encontraban las peptidasas en su localización original en la planta. Dado que las enzimas proteolíticas son utilizadas en distintos procesos industriales y teniendo en cuenta que en estos casos se recurre a preparaciones prácticamente no purificadas, también se consideró esencial contar con información sobre el comportamiento de estas últimas. En función de ello se decidió verificar el efecto del pH y de la fuerza iónica sobre la actividad proteolítica, así como la estabilidad de la enzima parcialmente purificada en distintas condiciones de pH y de temperatura. El paso siguiente consistió en diseñar una estrategia de purificación que permitiera separar las principales proteínas responsables de la actividad proteolítica de la muestra, necesaria para la posterior caracterización bioquímica y estructural de las mismas. En la elección de la metodología de purificación se procuró en lo posible que la misma resultara factible de ser escalada, teniendo en cuenta que las enzimas purificadas tienen alto valor agregado. La etapa final en el conocimiento de este tipo de biomoléculas es su caracterización, que además de las condiciones óptimas de acción implican el conocimiento de su masa molecular y del punto isoeléctrico, de sus características cinéticas y de su secuencia aminoacídica, estableciendo en este último caso la pertinente comparación con las estructuras de otras proteasas, a efectos de determinar el grado de homología que presenta en relación con las mismas, tanto por las implicancias filogenéticas como por el aporte que puede ofrecer al esclarecimiento de la especificidad de sustrato.
Doctor en Ciencias Exactas, área Ciencias Biológicas
Universidad Nacional de La Plata
Facultad de Ciencias Exactas
Materia
Ciencias Exactas
Bioquímica
Análisis bioquímico
Bioquímica vegetal
Nivel de accesibilidad
acceso abierto
Condiciones de uso
Licencia de distribución no exclusiva SEDICI
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/2246

id SEDICI_1ad7131b6cfbb85d4441b90d53dc3de5
oai_identifier_str oai:sedici.unlp.edu.ar:10915/2246
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Aislamiento, purificación y caracterización de las endopeptidasas cisteínicas presentes en frutos de Pseudananas macrodontes (Morr.) Harms (Bromeliaceae)Brullo, AdrianaCiencias ExactasBioquímicaAnálisis bioquímicoBioquímica vegetalSi bien las enzimas proteolíticas se hallan presentes en todas las células, en los organismos multicelulares de mayor complejidad suelen no tener una distribución uniforme y con frecuencia algunos tejidos y órganos las contienen en elevada concentración. Dadas las múltiples aplicaciones industriales de este tipo de enzimas, la detección de nuevas fuentes de proteasas a partir de recursos naturales renovables sigue siendo un tema de gran atractivo dentro del campo de la Química de Productos Naturales. En esta línea de razonamiento, la selección de nuevos materiales dentro de las plantas superiores tuvo que basarse necesariamente tanto en la información fitoquímica preexistente como en los aportes que la Fisiología y la Bioquímica Vegetales han realizado en cuanto a las funciones biológicas que desempeñan o se les atribuyen a las peptidasas en las células que las contienen y en los organismos de los que forman parte. Aún cuando el número de especies estudiadas con el propósito antes mencionado sigue siendo muy reducido (bastante menos del 1% de las especies conocidas), los datos de los que se dispone brindan una razonable orientación en cuanto a materiales vegetales que pueden resultar fuente promisoria de nuevas peptidasas. Si bien no en todos los casos, el contenido de los tubos laticíferos suele ser rico en este tipo de sustancias, a tal punto que la mayoría de las fitopeptidasas conocidas provienen de especies pertenecientes a familias caracterizadas por producir látex: Asclepiadaceae, Apocynaceae, Caricaceae, Euphorbiaceae y Moraceae, entre otras. Por otra parte, así como la presencia de látex no garantiza la existencia de enzimas proteolíticas, su ausencia tampoco descarta la posibilidad de hallarlas en especies pertenecientes a familias “no laticíferas”, como lo demuestra su hallazgo en Asteraceae, Bromeliaceae, Cucurbitaceae y Fabaceae, por citar los casos más conocidos. Parece más allá de toda duda que el desarrollo de la capacidad de producción de peptidasas en alta concentración tiene claras implicancias evolutivas. En el caso de la familia Bromeliaceae dicha capacidad parece estar restringida a sólo una de las tres subfamilias que la componen: las Bromelioideae, hecho en el que basamos nuestra hipótesis de trabajo al seleccionar los frutos de Pseudananas macrodontes (Morr.) Harms (n.v. “ihvirá”, “falso ananá”) como material de estudio de nuevas fuentes de fitopeptidasas. Una vez seleccionado el material y comprobada que fue la presencia de enzimas proteolíticas, resultó necesario establecer el procedimiento de extracción que permitiera obtener la mayor cantidad de proteína activa y al mismo tiempo preservar la integridad funcional de la misma, de modo de disponer de suficiente material de estudio y, además, que el mismo fuera representativo del estado en el que se encontraban las peptidasas en su localización original en la planta. Dado que las enzimas proteolíticas son utilizadas en distintos procesos industriales y teniendo en cuenta que en estos casos se recurre a preparaciones prácticamente no purificadas, también se consideró esencial contar con información sobre el comportamiento de estas últimas. En función de ello se decidió verificar el efecto del pH y de la fuerza iónica sobre la actividad proteolítica, así como la estabilidad de la enzima parcialmente purificada en distintas condiciones de pH y de temperatura. El paso siguiente consistió en diseñar una estrategia de purificación que permitiera separar las principales proteínas responsables de la actividad proteolítica de la muestra, necesaria para la posterior caracterización bioquímica y estructural de las mismas. En la elección de la metodología de purificación se procuró en lo posible que la misma resultara factible de ser escalada, teniendo en cuenta que las enzimas purificadas tienen alto valor agregado. La etapa final en el conocimiento de este tipo de biomoléculas es su caracterización, que además de las condiciones óptimas de acción implican el conocimiento de su masa molecular y del punto isoeléctrico, de sus características cinéticas y de su secuencia aminoacídica, estableciendo en este último caso la pertinente comparación con las estructuras de otras proteasas, a efectos de determinar el grado de homología que presenta en relación con las mismas, tanto por las implicancias filogenéticas como por el aporte que puede ofrecer al esclarecimiento de la especificidad de sustrato.Doctor en Ciencias Exactas, área Ciencias BiológicasUniversidad Nacional de La PlataFacultad de Ciencias ExactasCaffini, Néstor OscarNatalucci, Claudia Luisa2003info:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionTesis de doctoradohttp://purl.org/coar/resource_type/c_db06info:ar-repo/semantics/tesisDoctoralapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/2246https://doi.org/10.35537/10915/2246spainfo:eu-repo/semantics/openAccessLicencia de distribución no exclusiva SEDICIreponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:21:42Zoai:sedici.unlp.edu.ar:10915/2246Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:21:42.587SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Aislamiento, purificación y caracterización de las endopeptidasas cisteínicas presentes en frutos de Pseudananas macrodontes (Morr.) Harms (Bromeliaceae)
title Aislamiento, purificación y caracterización de las endopeptidasas cisteínicas presentes en frutos de Pseudananas macrodontes (Morr.) Harms (Bromeliaceae)
spellingShingle Aislamiento, purificación y caracterización de las endopeptidasas cisteínicas presentes en frutos de Pseudananas macrodontes (Morr.) Harms (Bromeliaceae)
Brullo, Adriana
Ciencias Exactas
Bioquímica
Análisis bioquímico
Bioquímica vegetal
title_short Aislamiento, purificación y caracterización de las endopeptidasas cisteínicas presentes en frutos de Pseudananas macrodontes (Morr.) Harms (Bromeliaceae)
title_full Aislamiento, purificación y caracterización de las endopeptidasas cisteínicas presentes en frutos de Pseudananas macrodontes (Morr.) Harms (Bromeliaceae)
title_fullStr Aislamiento, purificación y caracterización de las endopeptidasas cisteínicas presentes en frutos de Pseudananas macrodontes (Morr.) Harms (Bromeliaceae)
title_full_unstemmed Aislamiento, purificación y caracterización de las endopeptidasas cisteínicas presentes en frutos de Pseudananas macrodontes (Morr.) Harms (Bromeliaceae)
title_sort Aislamiento, purificación y caracterización de las endopeptidasas cisteínicas presentes en frutos de Pseudananas macrodontes (Morr.) Harms (Bromeliaceae)
dc.creator.none.fl_str_mv Brullo, Adriana
author Brullo, Adriana
author_facet Brullo, Adriana
author_role author
dc.contributor.none.fl_str_mv Caffini, Néstor Oscar
Natalucci, Claudia Luisa
dc.subject.none.fl_str_mv Ciencias Exactas
Bioquímica
Análisis bioquímico
Bioquímica vegetal
topic Ciencias Exactas
Bioquímica
Análisis bioquímico
Bioquímica vegetal
dc.description.none.fl_txt_mv Si bien las enzimas proteolíticas se hallan presentes en todas las células, en los organismos multicelulares de mayor complejidad suelen no tener una distribución uniforme y con frecuencia algunos tejidos y órganos las contienen en elevada concentración. Dadas las múltiples aplicaciones industriales de este tipo de enzimas, la detección de nuevas fuentes de proteasas a partir de recursos naturales renovables sigue siendo un tema de gran atractivo dentro del campo de la Química de Productos Naturales. En esta línea de razonamiento, la selección de nuevos materiales dentro de las plantas superiores tuvo que basarse necesariamente tanto en la información fitoquímica preexistente como en los aportes que la Fisiología y la Bioquímica Vegetales han realizado en cuanto a las funciones biológicas que desempeñan o se les atribuyen a las peptidasas en las células que las contienen y en los organismos de los que forman parte. Aún cuando el número de especies estudiadas con el propósito antes mencionado sigue siendo muy reducido (bastante menos del 1% de las especies conocidas), los datos de los que se dispone brindan una razonable orientación en cuanto a materiales vegetales que pueden resultar fuente promisoria de nuevas peptidasas. Si bien no en todos los casos, el contenido de los tubos laticíferos suele ser rico en este tipo de sustancias, a tal punto que la mayoría de las fitopeptidasas conocidas provienen de especies pertenecientes a familias caracterizadas por producir látex: Asclepiadaceae, Apocynaceae, Caricaceae, Euphorbiaceae y Moraceae, entre otras. Por otra parte, así como la presencia de látex no garantiza la existencia de enzimas proteolíticas, su ausencia tampoco descarta la posibilidad de hallarlas en especies pertenecientes a familias “no laticíferas”, como lo demuestra su hallazgo en Asteraceae, Bromeliaceae, Cucurbitaceae y Fabaceae, por citar los casos más conocidos. Parece más allá de toda duda que el desarrollo de la capacidad de producción de peptidasas en alta concentración tiene claras implicancias evolutivas. En el caso de la familia Bromeliaceae dicha capacidad parece estar restringida a sólo una de las tres subfamilias que la componen: las Bromelioideae, hecho en el que basamos nuestra hipótesis de trabajo al seleccionar los frutos de Pseudananas macrodontes (Morr.) Harms (n.v. “ihvirá”, “falso ananá”) como material de estudio de nuevas fuentes de fitopeptidasas. Una vez seleccionado el material y comprobada que fue la presencia de enzimas proteolíticas, resultó necesario establecer el procedimiento de extracción que permitiera obtener la mayor cantidad de proteína activa y al mismo tiempo preservar la integridad funcional de la misma, de modo de disponer de suficiente material de estudio y, además, que el mismo fuera representativo del estado en el que se encontraban las peptidasas en su localización original en la planta. Dado que las enzimas proteolíticas son utilizadas en distintos procesos industriales y teniendo en cuenta que en estos casos se recurre a preparaciones prácticamente no purificadas, también se consideró esencial contar con información sobre el comportamiento de estas últimas. En función de ello se decidió verificar el efecto del pH y de la fuerza iónica sobre la actividad proteolítica, así como la estabilidad de la enzima parcialmente purificada en distintas condiciones de pH y de temperatura. El paso siguiente consistió en diseñar una estrategia de purificación que permitiera separar las principales proteínas responsables de la actividad proteolítica de la muestra, necesaria para la posterior caracterización bioquímica y estructural de las mismas. En la elección de la metodología de purificación se procuró en lo posible que la misma resultara factible de ser escalada, teniendo en cuenta que las enzimas purificadas tienen alto valor agregado. La etapa final en el conocimiento de este tipo de biomoléculas es su caracterización, que además de las condiciones óptimas de acción implican el conocimiento de su masa molecular y del punto isoeléctrico, de sus características cinéticas y de su secuencia aminoacídica, estableciendo en este último caso la pertinente comparación con las estructuras de otras proteasas, a efectos de determinar el grado de homología que presenta en relación con las mismas, tanto por las implicancias filogenéticas como por el aporte que puede ofrecer al esclarecimiento de la especificidad de sustrato.
Doctor en Ciencias Exactas, área Ciencias Biológicas
Universidad Nacional de La Plata
Facultad de Ciencias Exactas
description Si bien las enzimas proteolíticas se hallan presentes en todas las células, en los organismos multicelulares de mayor complejidad suelen no tener una distribución uniforme y con frecuencia algunos tejidos y órganos las contienen en elevada concentración. Dadas las múltiples aplicaciones industriales de este tipo de enzimas, la detección de nuevas fuentes de proteasas a partir de recursos naturales renovables sigue siendo un tema de gran atractivo dentro del campo de la Química de Productos Naturales. En esta línea de razonamiento, la selección de nuevos materiales dentro de las plantas superiores tuvo que basarse necesariamente tanto en la información fitoquímica preexistente como en los aportes que la Fisiología y la Bioquímica Vegetales han realizado en cuanto a las funciones biológicas que desempeñan o se les atribuyen a las peptidasas en las células que las contienen y en los organismos de los que forman parte. Aún cuando el número de especies estudiadas con el propósito antes mencionado sigue siendo muy reducido (bastante menos del 1% de las especies conocidas), los datos de los que se dispone brindan una razonable orientación en cuanto a materiales vegetales que pueden resultar fuente promisoria de nuevas peptidasas. Si bien no en todos los casos, el contenido de los tubos laticíferos suele ser rico en este tipo de sustancias, a tal punto que la mayoría de las fitopeptidasas conocidas provienen de especies pertenecientes a familias caracterizadas por producir látex: Asclepiadaceae, Apocynaceae, Caricaceae, Euphorbiaceae y Moraceae, entre otras. Por otra parte, así como la presencia de látex no garantiza la existencia de enzimas proteolíticas, su ausencia tampoco descarta la posibilidad de hallarlas en especies pertenecientes a familias “no laticíferas”, como lo demuestra su hallazgo en Asteraceae, Bromeliaceae, Cucurbitaceae y Fabaceae, por citar los casos más conocidos. Parece más allá de toda duda que el desarrollo de la capacidad de producción de peptidasas en alta concentración tiene claras implicancias evolutivas. En el caso de la familia Bromeliaceae dicha capacidad parece estar restringida a sólo una de las tres subfamilias que la componen: las Bromelioideae, hecho en el que basamos nuestra hipótesis de trabajo al seleccionar los frutos de Pseudananas macrodontes (Morr.) Harms (n.v. “ihvirá”, “falso ananá”) como material de estudio de nuevas fuentes de fitopeptidasas. Una vez seleccionado el material y comprobada que fue la presencia de enzimas proteolíticas, resultó necesario establecer el procedimiento de extracción que permitiera obtener la mayor cantidad de proteína activa y al mismo tiempo preservar la integridad funcional de la misma, de modo de disponer de suficiente material de estudio y, además, que el mismo fuera representativo del estado en el que se encontraban las peptidasas en su localización original en la planta. Dado que las enzimas proteolíticas son utilizadas en distintos procesos industriales y teniendo en cuenta que en estos casos se recurre a preparaciones prácticamente no purificadas, también se consideró esencial contar con información sobre el comportamiento de estas últimas. En función de ello se decidió verificar el efecto del pH y de la fuerza iónica sobre la actividad proteolítica, así como la estabilidad de la enzima parcialmente purificada en distintas condiciones de pH y de temperatura. El paso siguiente consistió en diseñar una estrategia de purificación que permitiera separar las principales proteínas responsables de la actividad proteolítica de la muestra, necesaria para la posterior caracterización bioquímica y estructural de las mismas. En la elección de la metodología de purificación se procuró en lo posible que la misma resultara factible de ser escalada, teniendo en cuenta que las enzimas purificadas tienen alto valor agregado. La etapa final en el conocimiento de este tipo de biomoléculas es su caracterización, que además de las condiciones óptimas de acción implican el conocimiento de su masa molecular y del punto isoeléctrico, de sus características cinéticas y de su secuencia aminoacídica, estableciendo en este último caso la pertinente comparación con las estructuras de otras proteasas, a efectos de determinar el grado de homología que presenta en relación con las mismas, tanto por las implicancias filogenéticas como por el aporte que puede ofrecer al esclarecimiento de la especificidad de sustrato.
publishDate 2003
dc.date.none.fl_str_mv 2003
dc.type.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
info:eu-repo/semantics/acceptedVersion
Tesis de doctorado
http://purl.org/coar/resource_type/c_db06
info:ar-repo/semantics/tesisDoctoral
format doctoralThesis
status_str acceptedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/2246
https://doi.org/10.35537/10915/2246
url http://sedici.unlp.edu.ar/handle/10915/2246
https://doi.org/10.35537/10915/2246
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
Licencia de distribución no exclusiva SEDICI
eu_rights_str_mv openAccess
rights_invalid_str_mv Licencia de distribución no exclusiva SEDICI
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842260041604792320
score 13.13397