Interfacial properties in a discrete model for tumor growth

Autores
Moglia, Belén; Guisoni, Nara Cristina; Albano, Ezequiel Vicente
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We propose and study, by means of Monte Carlo numerical simulations, a minimal discrete model for avascular tumor growth, which can also be applied for the description of cell cultures in vitro. The interface of the tumor is self-affine and its width can be characterized by the following exponents: (i) the growth exponent β = 0.32 ( 2 ) that governs the early time regime, (ii) the roughness exponent α = 0.49 ( 2 ) related to the fluctuations in the stationary regime, and (iii) the dynamic exponent z = α / β ≃ 1.49 ( 2 ) , which measures the propagation of correlations in the direction parallel to the interface, e.g., ξ ∝ t 1 / z , where ξ is the parallel correlation length. Therefore, the interface belongs to the Kardar-Parisi-Zhang universality class, in agreement with recent experiments of cell cultures in vitro. Furthermore, density profiles of the growing cells are rationalized in terms of traveling waves that are solutions of the Fisher-Kolmogorov equation. In this way, we achieved excellent agreement between the simulation results of the discrete model and the continuous description of the growth front of the culture or tumor.
Instituto de Física de Líquidos y Sistemas Biológicos
Consejo Nacional de Investigaciones Científicas y Técnicas
Materia
Ciencias Exactas
Interfaces
Kardar-parisi-zhang
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/96950

id SEDICI_19fc2cd1e8abe27f2067604d745869f0
oai_identifier_str oai:sedici.unlp.edu.ar:10915/96950
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Interfacial properties in a discrete model for tumor growthMoglia, BelénGuisoni, Nara CristinaAlbano, Ezequiel VicenteCiencias ExactasInterfacesKardar-parisi-zhangWe propose and study, by means of Monte Carlo numerical simulations, a minimal discrete model for avascular tumor growth, which can also be applied for the description of cell cultures in vitro. The interface of the tumor is self-affine and its width can be characterized by the following exponents: (i) the growth exponent β = 0.32 ( 2 ) that governs the early time regime, (ii) the roughness exponent α = 0.49 ( 2 ) related to the fluctuations in the stationary regime, and (iii) the dynamic exponent z = α / β ≃ 1.49 ( 2 ) , which measures the propagation of correlations in the direction parallel to the interface, e.g., ξ ∝ t 1 / z , where ξ is the parallel correlation length. Therefore, the interface belongs to the Kardar-Parisi-Zhang universality class, in agreement with recent experiments of cell cultures in vitro. Furthermore, density profiles of the growing cells are rationalized in terms of traveling waves that are solutions of the Fisher-Kolmogorov equation. In this way, we achieved excellent agreement between the simulation results of the discrete model and the continuous description of the growth front of the culture or tumor.Instituto de Física de Líquidos y Sistemas BiológicosConsejo Nacional de Investigaciones Científicas y Técnicas2013-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/96950enginfo:eu-repo/semantics/altIdentifier/url/https://ri.conicet.gov.ar/11336/23522info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.87.032713info:eu-repo/semantics/altIdentifier/issn/1063-651Xinfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.87.032713info:eu-repo/semantics/altIdentifier/hdl/11336/23522info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-17T10:02:40Zoai:sedici.unlp.edu.ar:10915/96950Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-17 10:02:40.787SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Interfacial properties in a discrete model for tumor growth
title Interfacial properties in a discrete model for tumor growth
spellingShingle Interfacial properties in a discrete model for tumor growth
Moglia, Belén
Ciencias Exactas
Interfaces
Kardar-parisi-zhang
title_short Interfacial properties in a discrete model for tumor growth
title_full Interfacial properties in a discrete model for tumor growth
title_fullStr Interfacial properties in a discrete model for tumor growth
title_full_unstemmed Interfacial properties in a discrete model for tumor growth
title_sort Interfacial properties in a discrete model for tumor growth
dc.creator.none.fl_str_mv Moglia, Belén
Guisoni, Nara Cristina
Albano, Ezequiel Vicente
author Moglia, Belén
author_facet Moglia, Belén
Guisoni, Nara Cristina
Albano, Ezequiel Vicente
author_role author
author2 Guisoni, Nara Cristina
Albano, Ezequiel Vicente
author2_role author
author
dc.subject.none.fl_str_mv Ciencias Exactas
Interfaces
Kardar-parisi-zhang
topic Ciencias Exactas
Interfaces
Kardar-parisi-zhang
dc.description.none.fl_txt_mv We propose and study, by means of Monte Carlo numerical simulations, a minimal discrete model for avascular tumor growth, which can also be applied for the description of cell cultures in vitro. The interface of the tumor is self-affine and its width can be characterized by the following exponents: (i) the growth exponent β = 0.32 ( 2 ) that governs the early time regime, (ii) the roughness exponent α = 0.49 ( 2 ) related to the fluctuations in the stationary regime, and (iii) the dynamic exponent z = α / β ≃ 1.49 ( 2 ) , which measures the propagation of correlations in the direction parallel to the interface, e.g., ξ ∝ t 1 / z , where ξ is the parallel correlation length. Therefore, the interface belongs to the Kardar-Parisi-Zhang universality class, in agreement with recent experiments of cell cultures in vitro. Furthermore, density profiles of the growing cells are rationalized in terms of traveling waves that are solutions of the Fisher-Kolmogorov equation. In this way, we achieved excellent agreement between the simulation results of the discrete model and the continuous description of the growth front of the culture or tumor.
Instituto de Física de Líquidos y Sistemas Biológicos
Consejo Nacional de Investigaciones Científicas y Técnicas
description We propose and study, by means of Monte Carlo numerical simulations, a minimal discrete model for avascular tumor growth, which can also be applied for the description of cell cultures in vitro. The interface of the tumor is self-affine and its width can be characterized by the following exponents: (i) the growth exponent β = 0.32 ( 2 ) that governs the early time regime, (ii) the roughness exponent α = 0.49 ( 2 ) related to the fluctuations in the stationary regime, and (iii) the dynamic exponent z = α / β ≃ 1.49 ( 2 ) , which measures the propagation of correlations in the direction parallel to the interface, e.g., ξ ∝ t 1 / z , where ξ is the parallel correlation length. Therefore, the interface belongs to the Kardar-Parisi-Zhang universality class, in agreement with recent experiments of cell cultures in vitro. Furthermore, density profiles of the growing cells are rationalized in terms of traveling waves that are solutions of the Fisher-Kolmogorov equation. In this way, we achieved excellent agreement between the simulation results of the discrete model and the continuous description of the growth front of the culture or tumor.
publishDate 2013
dc.date.none.fl_str_mv 2013-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/96950
url http://sedici.unlp.edu.ar/handle/10915/96950
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://ri.conicet.gov.ar/11336/23522
info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.87.032713
info:eu-repo/semantics/altIdentifier/issn/1063-651X
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.87.032713
info:eu-repo/semantics/altIdentifier/hdl/11336/23522
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1843532542387421184
score 13.001348