Metabolic pathways synthesis based on ant colony optimization
- Autores
- Gerard, M. F.; Stegmayer Machado, Georgina S.; Milone, Diego H.
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- A current challenge in bioinformatics is to discover how to transform particular compounds into specific products. Typically, the common approach is finding the sequence of reactions that relate the specified substrate (source) and product (target) using classical searching algorithms. However, those methods have three main limitations: difficulty in handling large amounts of reactions and compounds; absence of a step that verifies the availability of substrates; and inability to find branched pathways. In [1], we propose a novel ant colony-based algorithm for metabolic pathways synthesis. This algorithm, named Pheromone-Directed Seeker (PhDSeeker), is able to relate several compounds simultaneously by emulating the behavior of real ants while seeking a path between their colony and a source of food. The process is designed to ensure the availability of substrates for every reaction in the solution. Thus, ants explore the set of reactions on each iteration searching for possible pathways to link the compounds. After that, they share information about solutions found by each one and then perform a new search. This process is guided by a cost function that evaluates the availability of substrates, the connection between source and target, and the pathway size.
Sociedad Argentina de Informática e Investigación Operativa - Materia
-
Ciencias Informáticas
Colony-based algorithm
PhDSeeker - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/3.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/87828
Ver los metadatos del registro completo
id |
SEDICI_19a21e7d8a836d2df5975a3d35974eb3 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/87828 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Metabolic pathways synthesis based on ant colony optimizationGerard, M. F.Stegmayer Machado, Georgina S.Milone, Diego H.Ciencias InformáticasColony-based algorithmPhDSeekerA current challenge in bioinformatics is to discover how to transform particular compounds into specific products. Typically, the common approach is finding the sequence of reactions that relate the specified substrate (source) and product (target) using classical searching algorithms. However, those methods have three main limitations: difficulty in handling large amounts of reactions and compounds; absence of a step that verifies the availability of substrates; and inability to find branched pathways. In [1], we propose a novel ant colony-based algorithm for metabolic pathways synthesis. This algorithm, named Pheromone-Directed Seeker (PhDSeeker), is able to relate several compounds simultaneously by emulating the behavior of real ants while seeking a path between their colony and a source of food. The process is designed to ensure the availability of substrates for every reaction in the solution. Thus, ants explore the set of reactions on each iteration searching for possible pathways to link the compounds. After that, they share information about solutions found by each one and then perform a new search. This process is guided by a cost function that evaluates the availability of substrates, the connection between source and target, and the pathway size.Sociedad Argentina de Informática e Investigación Operativa2019-09info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionResumenhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf1http://sedici.unlp.edu.ar/handle/10915/87828enginfo:eu-repo/semantics/altIdentifier/issn/2451-7585info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/3.0/Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:17:29Zoai:sedici.unlp.edu.ar:10915/87828Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:17:29.877SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Metabolic pathways synthesis based on ant colony optimization |
title |
Metabolic pathways synthesis based on ant colony optimization |
spellingShingle |
Metabolic pathways synthesis based on ant colony optimization Gerard, M. F. Ciencias Informáticas Colony-based algorithm PhDSeeker |
title_short |
Metabolic pathways synthesis based on ant colony optimization |
title_full |
Metabolic pathways synthesis based on ant colony optimization |
title_fullStr |
Metabolic pathways synthesis based on ant colony optimization |
title_full_unstemmed |
Metabolic pathways synthesis based on ant colony optimization |
title_sort |
Metabolic pathways synthesis based on ant colony optimization |
dc.creator.none.fl_str_mv |
Gerard, M. F. Stegmayer Machado, Georgina S. Milone, Diego H. |
author |
Gerard, M. F. |
author_facet |
Gerard, M. F. Stegmayer Machado, Georgina S. Milone, Diego H. |
author_role |
author |
author2 |
Stegmayer Machado, Georgina S. Milone, Diego H. |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Colony-based algorithm PhDSeeker |
topic |
Ciencias Informáticas Colony-based algorithm PhDSeeker |
dc.description.none.fl_txt_mv |
A current challenge in bioinformatics is to discover how to transform particular compounds into specific products. Typically, the common approach is finding the sequence of reactions that relate the specified substrate (source) and product (target) using classical searching algorithms. However, those methods have three main limitations: difficulty in handling large amounts of reactions and compounds; absence of a step that verifies the availability of substrates; and inability to find branched pathways. In [1], we propose a novel ant colony-based algorithm for metabolic pathways synthesis. This algorithm, named Pheromone-Directed Seeker (PhDSeeker), is able to relate several compounds simultaneously by emulating the behavior of real ants while seeking a path between their colony and a source of food. The process is designed to ensure the availability of substrates for every reaction in the solution. Thus, ants explore the set of reactions on each iteration searching for possible pathways to link the compounds. After that, they share information about solutions found by each one and then perform a new search. This process is guided by a cost function that evaluates the availability of substrates, the connection between source and target, and the pathway size. Sociedad Argentina de Informática e Investigación Operativa |
description |
A current challenge in bioinformatics is to discover how to transform particular compounds into specific products. Typically, the common approach is finding the sequence of reactions that relate the specified substrate (source) and product (target) using classical searching algorithms. However, those methods have three main limitations: difficulty in handling large amounts of reactions and compounds; absence of a step that verifies the availability of substrates; and inability to find branched pathways. In [1], we propose a novel ant colony-based algorithm for metabolic pathways synthesis. This algorithm, named Pheromone-Directed Seeker (PhDSeeker), is able to relate several compounds simultaneously by emulating the behavior of real ants while seeking a path between their colony and a source of food. The process is designed to ensure the availability of substrates for every reaction in the solution. Thus, ants explore the set of reactions on each iteration searching for possible pathways to link the compounds. After that, they share information about solutions found by each one and then perform a new search. This process is guided by a cost function that evaluates the availability of substrates, the connection between source and target, and the pathway size. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Resumen http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/87828 |
url |
http://sedici.unlp.edu.ar/handle/10915/87828 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/2451-7585 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/3.0/ Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/3.0/ Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0) |
dc.format.none.fl_str_mv |
application/pdf 1 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616048125411328 |
score |
13.070432 |