Towards a Malleable Tensorflow Implementation
- Autores
- Libutti, Leandro Ariel; Igual, Francisco; Piñuel, Luis; De Giusti, Laura Cristina; Naiouf, Marcelo; Rucci, Enzo; Naiouf, Marcelo; Chichizola, Franco; De Giusti, Laura Cristina
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- parte de libro
- Estado
- versión publicada
- Descripción
- The TensorFlow framework was designed since its inception to provide multi-thread capabilities, extended with hardware accelerator support to leverage the potential of modern architectures. The amount of parallelism in current versions of the framework can be selected at multiple levels (intra- and inter-paralellism) under demand. However, this selection is fixed, and cannot vary during the execution of training/inference sessions. This heavily restricts the flexibility and elasticity of the framework, especially in scenarios in which multiple TensorFlow instances co-exist in a parallel architecture. In this work, we propose the necessary modifications within TensorFlow to support dynamic selection of threads, in order to provide transparent malleability to the infrastructure. Experimental results show that this approach is effective in the variation of parallelism, and paves the road towards future co-scheduling techniques for multi-TensorFlow scenarios.
Instituto de Investigación en Informática - Materia
-
Ciencias Informáticas
TensorFlow
Malleability
Containers
Resource management
Co-scheduling - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/145222
Ver los metadatos del registro completo
id |
SEDICI_19029ca215ed51acfccafa916652c8cd |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/145222 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Towards a Malleable Tensorflow ImplementationLibutti, Leandro ArielIgual, FranciscoPiñuel, LuisDe Giusti, Laura CristinaNaiouf, MarceloRucci, EnzoNaiouf, MarceloChichizola, FrancoDe Giusti, Laura CristinaCiencias InformáticasTensorFlowMalleabilityContainersResource managementCo-schedulingThe TensorFlow framework was designed since its inception to provide multi-thread capabilities, extended with hardware accelerator support to leverage the potential of modern architectures. The amount of parallelism in current versions of the framework can be selected at multiple levels (intra- and inter-paralellism) under demand. However, this selection is fixed, and cannot vary during the execution of training/inference sessions. This heavily restricts the flexibility and elasticity of the framework, especially in scenarios in which multiple TensorFlow instances co-exist in a parallel architecture. In this work, we propose the necessary modifications within TensorFlow to support dynamic selection of threads, in order to provide transparent malleability to the infrastructure. Experimental results show that this approach is effective in the variation of parallelism, and paves the road towards future co-scheduling techniques for multi-TensorFlow scenarios.Instituto de Investigación en InformáticaSpringer2020-10-24info:eu-repo/semantics/bookPartinfo:eu-repo/semantics/publishedVersionCapitulo de librohttp://purl.org/coar/resource_type/c_3248info:ar-repo/semantics/parteDeLibroapplication/pdf30-40http://sedici.unlp.edu.ar/handle/10915/145222enginfo:eu-repo/semantics/altIdentifier/isbn/978-3-030-61218-4info:eu-repo/semantics/altIdentifier/issn/1865-0929info:eu-repo/semantics/altIdentifier/issn/1865-0937info:eu-repo/semantics/altIdentifier/doi/10.1007/978-3-030-61218-4_3info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-17T10:15:00Zoai:sedici.unlp.edu.ar:10915/145222Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-17 10:15:00.598SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Towards a Malleable Tensorflow Implementation |
title |
Towards a Malleable Tensorflow Implementation |
spellingShingle |
Towards a Malleable Tensorflow Implementation Libutti, Leandro Ariel Ciencias Informáticas TensorFlow Malleability Containers Resource management Co-scheduling |
title_short |
Towards a Malleable Tensorflow Implementation |
title_full |
Towards a Malleable Tensorflow Implementation |
title_fullStr |
Towards a Malleable Tensorflow Implementation |
title_full_unstemmed |
Towards a Malleable Tensorflow Implementation |
title_sort |
Towards a Malleable Tensorflow Implementation |
dc.creator.none.fl_str_mv |
Libutti, Leandro Ariel Igual, Francisco Piñuel, Luis De Giusti, Laura Cristina Naiouf, Marcelo Rucci, Enzo Naiouf, Marcelo Chichizola, Franco De Giusti, Laura Cristina |
author |
Libutti, Leandro Ariel |
author_facet |
Libutti, Leandro Ariel Igual, Francisco Piñuel, Luis De Giusti, Laura Cristina Naiouf, Marcelo Rucci, Enzo Chichizola, Franco |
author_role |
author |
author2 |
Igual, Francisco Piñuel, Luis De Giusti, Laura Cristina Naiouf, Marcelo Rucci, Enzo Chichizola, Franco |
author2_role |
author author author author author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas TensorFlow Malleability Containers Resource management Co-scheduling |
topic |
Ciencias Informáticas TensorFlow Malleability Containers Resource management Co-scheduling |
dc.description.none.fl_txt_mv |
The TensorFlow framework was designed since its inception to provide multi-thread capabilities, extended with hardware accelerator support to leverage the potential of modern architectures. The amount of parallelism in current versions of the framework can be selected at multiple levels (intra- and inter-paralellism) under demand. However, this selection is fixed, and cannot vary during the execution of training/inference sessions. This heavily restricts the flexibility and elasticity of the framework, especially in scenarios in which multiple TensorFlow instances co-exist in a parallel architecture. In this work, we propose the necessary modifications within TensorFlow to support dynamic selection of threads, in order to provide transparent malleability to the infrastructure. Experimental results show that this approach is effective in the variation of parallelism, and paves the road towards future co-scheduling techniques for multi-TensorFlow scenarios. Instituto de Investigación en Informática |
description |
The TensorFlow framework was designed since its inception to provide multi-thread capabilities, extended with hardware accelerator support to leverage the potential of modern architectures. The amount of parallelism in current versions of the framework can be selected at multiple levels (intra- and inter-paralellism) under demand. However, this selection is fixed, and cannot vary during the execution of training/inference sessions. This heavily restricts the flexibility and elasticity of the framework, especially in scenarios in which multiple TensorFlow instances co-exist in a parallel architecture. In this work, we propose the necessary modifications within TensorFlow to support dynamic selection of threads, in order to provide transparent malleability to the infrastructure. Experimental results show that this approach is effective in the variation of parallelism, and paves the road towards future co-scheduling techniques for multi-TensorFlow scenarios. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-10-24 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/bookPart info:eu-repo/semantics/publishedVersion Capitulo de libro http://purl.org/coar/resource_type/c_3248 info:ar-repo/semantics/parteDeLibro |
format |
bookPart |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/145222 |
url |
http://sedici.unlp.edu.ar/handle/10915/145222 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/isbn/978-3-030-61218-4 info:eu-repo/semantics/altIdentifier/issn/1865-0929 info:eu-repo/semantics/altIdentifier/issn/1865-0937 info:eu-repo/semantics/altIdentifier/doi/10.1007/978-3-030-61218-4_3 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 30-40 |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1843532790675537920 |
score |
13.001348 |