On the Complexity of Lie Algebras
- Autores
- Groote, Hans F. de; Heintz, Joos; Möhler, Stefan; Schmidt, Heinz
- Año de publicación
- 1987
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Let U, V, W be finite dimensional vector spaces over a field k and let : U x V → W be a bilinear mapping. The (multiplieative) complexity L(~) of ~ is defined as the least r ∈~ such that there are linear forms Ul,...,u r , Vl,...,v r ∈ (U xV) and elements Wl,...,w r ∈ W satisfying r ~(x,y) = ~ Up(X,y) Vp(X,y) Wp for all (x~y) ∈ U× V .
Departamento de Matemática - Materia
-
Matemática
Bilinear Mapping
Double Centralizer
Borel Subalgebra - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/137412
Ver los metadatos del registro completo
id |
SEDICI_18641be2c7904da909e6ab26f1aa5c1b |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/137412 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
On the Complexity of Lie AlgebrasGroote, Hans F. deHeintz, JoosMöhler, StefanSchmidt, HeinzMatemáticaBilinear MappingDouble CentralizerBorel SubalgebraLet U, V, W be finite dimensional vector spaces over a field k and let : U x V → W be a bilinear mapping. The (multiplieative) complexity L(~) of ~ is defined as the least r ∈~ such that there are linear forms Ul,...,u r , Vl,...,v r ∈ (U xV) and elements Wl,...,w r ∈ W satisfying r ~(x,y) = ~ Up(X,y) Vp(X,y) Wp for all (x~y) ∈ U× V .Departamento de Matemática1987info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf172-179http://sedici.unlp.edu.ar/handle/10915/137412enginfo:eu-repo/semantics/altIdentifier/issn/0302-9743info:eu-repo/semantics/altIdentifier/issn/1611-3349info:eu-repo/semantics/altIdentifier/doi/10.1007/3-540-18740-5_39info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:31:48Zoai:sedici.unlp.edu.ar:10915/137412Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:31:48.444SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
On the Complexity of Lie Algebras |
title |
On the Complexity of Lie Algebras |
spellingShingle |
On the Complexity of Lie Algebras Groote, Hans F. de Matemática Bilinear Mapping Double Centralizer Borel Subalgebra |
title_short |
On the Complexity of Lie Algebras |
title_full |
On the Complexity of Lie Algebras |
title_fullStr |
On the Complexity of Lie Algebras |
title_full_unstemmed |
On the Complexity of Lie Algebras |
title_sort |
On the Complexity of Lie Algebras |
dc.creator.none.fl_str_mv |
Groote, Hans F. de Heintz, Joos Möhler, Stefan Schmidt, Heinz |
author |
Groote, Hans F. de |
author_facet |
Groote, Hans F. de Heintz, Joos Möhler, Stefan Schmidt, Heinz |
author_role |
author |
author2 |
Heintz, Joos Möhler, Stefan Schmidt, Heinz |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Matemática Bilinear Mapping Double Centralizer Borel Subalgebra |
topic |
Matemática Bilinear Mapping Double Centralizer Borel Subalgebra |
dc.description.none.fl_txt_mv |
Let U, V, W be finite dimensional vector spaces over a field k and let : U x V → W be a bilinear mapping. The (multiplieative) complexity L(~) of ~ is defined as the least r ∈~ such that there are linear forms Ul,...,u r , Vl,...,v r ∈ (U xV) and elements Wl,...,w r ∈ W satisfying r ~(x,y) = ~ Up(X,y) Vp(X,y) Wp for all (x~y) ∈ U× V . Departamento de Matemática |
description |
Let U, V, W be finite dimensional vector spaces over a field k and let : U x V → W be a bilinear mapping. The (multiplieative) complexity L(~) of ~ is defined as the least r ∈~ such that there are linear forms Ul,...,u r , Vl,...,v r ∈ (U xV) and elements Wl,...,w r ∈ W satisfying r ~(x,y) = ~ Up(X,y) Vp(X,y) Wp for all (x~y) ∈ U× V . |
publishDate |
1987 |
dc.date.none.fl_str_mv |
1987 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/137412 |
url |
http://sedici.unlp.edu.ar/handle/10915/137412 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/0302-9743 info:eu-repo/semantics/altIdentifier/issn/1611-3349 info:eu-repo/semantics/altIdentifier/doi/10.1007/3-540-18740-5_39 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
dc.format.none.fl_str_mv |
application/pdf 172-179 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616197944901632 |
score |
13.070432 |