Breast cancer biomarker discovery in the functional genomic age: A systematic review of 42 gene expression signatures
- Autores
- Abba, Martín Carlos; Lacunza, Ezequiel; Butti, Matías A.; Aldaz, C. Marcelo
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- reseña artículo
- Estado
- versión publicada
- Descripción
- In this review we provide a systematic analysis of transcriptomic signatures derived from 42 breast cancer gene expression studies, in an effort to identify the most relevant breast cancer biomarkers using a meta-analysis method. Meta-data revealed a set of 117 genes that were the most commonly affected ranging from 12% to 36% of overlap among breast cancer gene expression studies. Data mining analysis of transcripts and protein-protein interactions of these commonly modulated genes indicate three functional modules signifcantly affected among signatures, one module related with the response to steroid hormone stimulus, and two modules related to the cell cycle. Analysis of a publicly available gene expression data showed that the obtained meta-signature is capable of predicting overall survival (P < 0.0001) and relapse-free survival (P < 0.0001) in patients with early-stage breast carcinomas. In addition, the identifed meta-signature improves breast cancer patient stratifcation independently of traditional prognostic factors in a multivariate Cox proportional-hazards analysis.
Facultad de Ciencias Médicas - Materia
-
Ciencias Médicas
biomarkers
APC protein
aurora A kinase
breast cancer
Bub1 related protein
gene expression signatures
cyclin
estrogen receptor alpha
forkhead transcription factor
hepatocyte nuclear factor 3alpha
manganese superoxide dismutase
TTK protein kinase
ubiquitin conjugating enzyme
microarray analysis
mitosis spindle - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/3.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/34620
Ver los metadatos del registro completo
id |
SEDICI_172d79f8232d5d4820ae249f0afcbcbe |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/34620 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Breast cancer biomarker discovery in the functional genomic age: A systematic review of 42 gene expression signaturesAbba, Martín CarlosLacunza, EzequielButti, Matías A.Aldaz, C. MarceloCiencias MédicasbiomarkersAPC proteinaurora A kinasebreast cancerBub1 related proteingene expression signaturescyclinestrogen receptor alphaforkhead transcription factorhepatocyte nuclear factor 3alphamanganese superoxide dismutaseTTK protein kinaseubiquitin conjugating enzymemicroarray analysismitosis spindleIn this review we provide a systematic analysis of transcriptomic signatures derived from 42 breast cancer gene expression studies, in an effort to identify the most relevant breast cancer biomarkers using a meta-analysis method. Meta-data revealed a set of 117 genes that were the most commonly affected ranging from 12% to 36% of overlap among breast cancer gene expression studies. Data mining analysis of transcripts and protein-protein interactions of these commonly modulated genes indicate three functional modules signifcantly affected among signatures, one module related with the response to steroid hormone stimulus, and two modules related to the cell cycle. Analysis of a publicly available gene expression data showed that the obtained meta-signature is capable of predicting overall survival (P < 0.0001) and relapse-free survival (P < 0.0001) in patients with early-stage breast carcinomas. In addition, the identifed meta-signature improves breast cancer patient stratifcation independently of traditional prognostic factors in a multivariate Cox proportional-hazards analysis.Facultad de Ciencias Médicas2010-10-27info:eu-repo/semantics/reviewinfo:eu-repo/semantics/publishedVersionRevisionhttp://purl.org/coar/resource_type/c_dcae04bcinfo:ar-repo/semantics/resenaArticuloapplication/pdf103-118http://sedici.unlp.edu.ar/handle/10915/34620enginfo:eu-repo/semantics/altIdentifier/url/http://www.la-press.com/breast-cancer-biomarker-discovery-in-the-functional-genomic-age-a-syst-article-a2325info:eu-repo/semantics/altIdentifier/issn/1177-2719info:eu-repo/semantics/altIdentifier/doi/10.4137/BMI.S5740info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/3.0/Creative Commons Attribution 3.0 Unported (CC BY 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:29:49Zoai:sedici.unlp.edu.ar:10915/34620Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:29:49.555SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Breast cancer biomarker discovery in the functional genomic age: A systematic review of 42 gene expression signatures |
title |
Breast cancer biomarker discovery in the functional genomic age: A systematic review of 42 gene expression signatures |
spellingShingle |
Breast cancer biomarker discovery in the functional genomic age: A systematic review of 42 gene expression signatures Abba, Martín Carlos Ciencias Médicas biomarkers APC protein aurora A kinase breast cancer Bub1 related protein gene expression signatures cyclin estrogen receptor alpha forkhead transcription factor hepatocyte nuclear factor 3alpha manganese superoxide dismutase TTK protein kinase ubiquitin conjugating enzyme microarray analysis mitosis spindle |
title_short |
Breast cancer biomarker discovery in the functional genomic age: A systematic review of 42 gene expression signatures |
title_full |
Breast cancer biomarker discovery in the functional genomic age: A systematic review of 42 gene expression signatures |
title_fullStr |
Breast cancer biomarker discovery in the functional genomic age: A systematic review of 42 gene expression signatures |
title_full_unstemmed |
Breast cancer biomarker discovery in the functional genomic age: A systematic review of 42 gene expression signatures |
title_sort |
Breast cancer biomarker discovery in the functional genomic age: A systematic review of 42 gene expression signatures |
dc.creator.none.fl_str_mv |
Abba, Martín Carlos Lacunza, Ezequiel Butti, Matías A. Aldaz, C. Marcelo |
author |
Abba, Martín Carlos |
author_facet |
Abba, Martín Carlos Lacunza, Ezequiel Butti, Matías A. Aldaz, C. Marcelo |
author_role |
author |
author2 |
Lacunza, Ezequiel Butti, Matías A. Aldaz, C. Marcelo |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Ciencias Médicas biomarkers APC protein aurora A kinase breast cancer Bub1 related protein gene expression signatures cyclin estrogen receptor alpha forkhead transcription factor hepatocyte nuclear factor 3alpha manganese superoxide dismutase TTK protein kinase ubiquitin conjugating enzyme microarray analysis mitosis spindle |
topic |
Ciencias Médicas biomarkers APC protein aurora A kinase breast cancer Bub1 related protein gene expression signatures cyclin estrogen receptor alpha forkhead transcription factor hepatocyte nuclear factor 3alpha manganese superoxide dismutase TTK protein kinase ubiquitin conjugating enzyme microarray analysis mitosis spindle |
dc.description.none.fl_txt_mv |
In this review we provide a systematic analysis of transcriptomic signatures derived from 42 breast cancer gene expression studies, in an effort to identify the most relevant breast cancer biomarkers using a meta-analysis method. Meta-data revealed a set of 117 genes that were the most commonly affected ranging from 12% to 36% of overlap among breast cancer gene expression studies. Data mining analysis of transcripts and protein-protein interactions of these commonly modulated genes indicate three functional modules signifcantly affected among signatures, one module related with the response to steroid hormone stimulus, and two modules related to the cell cycle. Analysis of a publicly available gene expression data showed that the obtained meta-signature is capable of predicting overall survival (P < 0.0001) and relapse-free survival (P < 0.0001) in patients with early-stage breast carcinomas. In addition, the identifed meta-signature improves breast cancer patient stratifcation independently of traditional prognostic factors in a multivariate Cox proportional-hazards analysis. Facultad de Ciencias Médicas |
description |
In this review we provide a systematic analysis of transcriptomic signatures derived from 42 breast cancer gene expression studies, in an effort to identify the most relevant breast cancer biomarkers using a meta-analysis method. Meta-data revealed a set of 117 genes that were the most commonly affected ranging from 12% to 36% of overlap among breast cancer gene expression studies. Data mining analysis of transcripts and protein-protein interactions of these commonly modulated genes indicate three functional modules signifcantly affected among signatures, one module related with the response to steroid hormone stimulus, and two modules related to the cell cycle. Analysis of a publicly available gene expression data showed that the obtained meta-signature is capable of predicting overall survival (P < 0.0001) and relapse-free survival (P < 0.0001) in patients with early-stage breast carcinomas. In addition, the identifed meta-signature improves breast cancer patient stratifcation independently of traditional prognostic factors in a multivariate Cox proportional-hazards analysis. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-10-27 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/review info:eu-repo/semantics/publishedVersion Revision http://purl.org/coar/resource_type/c_dcae04bc info:ar-repo/semantics/resenaArticulo |
format |
review |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/34620 |
url |
http://sedici.unlp.edu.ar/handle/10915/34620 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.la-press.com/breast-cancer-biomarker-discovery-in-the-functional-genomic-age-a-syst-article-a2325 info:eu-repo/semantics/altIdentifier/issn/1177-2719 info:eu-repo/semantics/altIdentifier/doi/10.4137/BMI.S5740 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/3.0/ Creative Commons Attribution 3.0 Unported (CC BY 3.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/3.0/ Creative Commons Attribution 3.0 Unported (CC BY 3.0) |
dc.format.none.fl_str_mv |
application/pdf 103-118 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260140660621312 |
score |
13.13397 |