How to Explicitly Calculate Feynman and Wheeler Propagators in the ADS/CFT Correspondence

Autores
Plastino, Ángel Luis; Rocca, Mario Carlos
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We discuss, giving all necessary details, the boundary-bulk propagators. We do it for a scalar field, with and without mass, for both the Feynman and the Wheeler cases. Contrary to standard procedure, we do not need here to appeal to any unfounded conjecture (as done by other authors). Emphasize that we do not try to modify standard ADS/CFT procedures, but use them to evaluate the corresponding Feynman and Wheeler propagators. Our present calculations are original in the sense of being the first ones undertaken explicitly using distributions theory (DT). They are carried out in two instances: 1) when the boundary is a Euclidean space and 2) when it is of Minkowskian nature. In this last case we compute also three propagators: Feynman’s, Anti- Feynman’s, and Wheeler’s (half advanced plus half retarded). For an operator corresponding to a scalar field we explicitly obtain, for the first time ever, the two points’ correlations functions in the three instances above mentioned. To repeat, it is not our intention here to improve on ADS/CFT theory but only to employ it for evaluating the corresponding Wheeler’s propagators.
Instituto de Física La Plata
Materia
Física
ADS/CFT correspondence
Boundary-bulk propagators
Feynman’s propagators
Wheeler’s propagators
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/119306

id SEDICI_15c2fd4a65deea11d87db9bcf78cca45
oai_identifier_str oai:sedici.unlp.edu.ar:10915/119306
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling How to Explicitly Calculate Feynman and Wheeler Propagators in the ADS/CFT CorrespondencePlastino, Ángel LuisRocca, Mario CarlosFísicaADS/CFT correspondenceBoundary-bulk propagatorsFeynman’s propagatorsWheeler’s propagatorsWe discuss, giving all necessary details, the boundary-bulk propagators. We do it for a scalar field, with and without mass, for both the Feynman and the Wheeler cases. Contrary to standard procedure, we do not need here to appeal to any unfounded conjecture (as done by other authors). Emphasize that we do not try to modify standard ADS/CFT procedures, but use them to evaluate the corresponding Feynman and Wheeler propagators. Our present calculations are original in the sense of being the first ones undertaken explicitly using distributions theory (DT). They are carried out in two instances: 1) when the boundary is a Euclidean space and 2) when it is of Minkowskian nature. In this last case we compute also three propagators: Feynman’s, Anti- Feynman’s, and Wheeler’s (half advanced plus half retarded). For an operator corresponding to a scalar field we explicitly obtain, for the first time ever, the two points’ correlations functions in the three instances above mentioned. To repeat, it is not our intention here to improve on ADS/CFT theory but only to employ it for evaluating the corresponding Wheeler’s propagators.Instituto de Física La Plata2020info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf304-323http://sedici.unlp.edu.ar/handle/10915/119306enginfo:eu-repo/semantics/altIdentifier/issn/2153-120Xinfo:eu-repo/semantics/altIdentifier/issn/2153-1196info:eu-repo/semantics/altIdentifier/doi/10.4236/jmp.2020.112019info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:28:09Zoai:sedici.unlp.edu.ar:10915/119306Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:28:09.856SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv How to Explicitly Calculate Feynman and Wheeler Propagators in the ADS/CFT Correspondence
title How to Explicitly Calculate Feynman and Wheeler Propagators in the ADS/CFT Correspondence
spellingShingle How to Explicitly Calculate Feynman and Wheeler Propagators in the ADS/CFT Correspondence
Plastino, Ángel Luis
Física
ADS/CFT correspondence
Boundary-bulk propagators
Feynman’s propagators
Wheeler’s propagators
title_short How to Explicitly Calculate Feynman and Wheeler Propagators in the ADS/CFT Correspondence
title_full How to Explicitly Calculate Feynman and Wheeler Propagators in the ADS/CFT Correspondence
title_fullStr How to Explicitly Calculate Feynman and Wheeler Propagators in the ADS/CFT Correspondence
title_full_unstemmed How to Explicitly Calculate Feynman and Wheeler Propagators in the ADS/CFT Correspondence
title_sort How to Explicitly Calculate Feynman and Wheeler Propagators in the ADS/CFT Correspondence
dc.creator.none.fl_str_mv Plastino, Ángel Luis
Rocca, Mario Carlos
author Plastino, Ángel Luis
author_facet Plastino, Ángel Luis
Rocca, Mario Carlos
author_role author
author2 Rocca, Mario Carlos
author2_role author
dc.subject.none.fl_str_mv Física
ADS/CFT correspondence
Boundary-bulk propagators
Feynman’s propagators
Wheeler’s propagators
topic Física
ADS/CFT correspondence
Boundary-bulk propagators
Feynman’s propagators
Wheeler’s propagators
dc.description.none.fl_txt_mv We discuss, giving all necessary details, the boundary-bulk propagators. We do it for a scalar field, with and without mass, for both the Feynman and the Wheeler cases. Contrary to standard procedure, we do not need here to appeal to any unfounded conjecture (as done by other authors). Emphasize that we do not try to modify standard ADS/CFT procedures, but use them to evaluate the corresponding Feynman and Wheeler propagators. Our present calculations are original in the sense of being the first ones undertaken explicitly using distributions theory (DT). They are carried out in two instances: 1) when the boundary is a Euclidean space and 2) when it is of Minkowskian nature. In this last case we compute also three propagators: Feynman’s, Anti- Feynman’s, and Wheeler’s (half advanced plus half retarded). For an operator corresponding to a scalar field we explicitly obtain, for the first time ever, the two points’ correlations functions in the three instances above mentioned. To repeat, it is not our intention here to improve on ADS/CFT theory but only to employ it for evaluating the corresponding Wheeler’s propagators.
Instituto de Física La Plata
description We discuss, giving all necessary details, the boundary-bulk propagators. We do it for a scalar field, with and without mass, for both the Feynman and the Wheeler cases. Contrary to standard procedure, we do not need here to appeal to any unfounded conjecture (as done by other authors). Emphasize that we do not try to modify standard ADS/CFT procedures, but use them to evaluate the corresponding Feynman and Wheeler propagators. Our present calculations are original in the sense of being the first ones undertaken explicitly using distributions theory (DT). They are carried out in two instances: 1) when the boundary is a Euclidean space and 2) when it is of Minkowskian nature. In this last case we compute also three propagators: Feynman’s, Anti- Feynman’s, and Wheeler’s (half advanced plus half retarded). For an operator corresponding to a scalar field we explicitly obtain, for the first time ever, the two points’ correlations functions in the three instances above mentioned. To repeat, it is not our intention here to improve on ADS/CFT theory but only to employ it for evaluating the corresponding Wheeler’s propagators.
publishDate 2020
dc.date.none.fl_str_mv 2020
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/119306
url http://sedici.unlp.edu.ar/handle/10915/119306
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/2153-120X
info:eu-repo/semantics/altIdentifier/issn/2153-1196
info:eu-repo/semantics/altIdentifier/doi/10.4236/jmp.2020.112019
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
dc.format.none.fl_str_mv application/pdf
304-323
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616159870058496
score 13.070432