How to Explicitly Calculate Feynman and Wheeler Propagators in the ADS/CFT Correspondence
- Autores
- Plastino, Ángel Luis; Rocca, Mario Carlos
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We discuss, giving all necessary details, the boundary-bulk propagators. We do it for a scalar field, with and without mass, for both the Feynman and the Wheeler cases. Contrary to standard procedure, we do not need here to appeal to any unfounded conjecture (as done by other authors). Emphasize that we do not try to modify standard ADS/CFT procedures, but use them to evaluate the corresponding Feynman and Wheeler propagators. Our present calculations are original in the sense of being the first ones undertaken explicitly using distributions theory (DT). They are carried out in two instances: 1) when the boundary is a Euclidean space and 2) when it is of Minkowskian nature. In this last case we compute also three propagators: Feynman’s, Anti- Feynman’s, and Wheeler’s (half advanced plus half retarded). For an operator corresponding to a scalar field we explicitly obtain, for the first time ever, the two points’ correlations functions in the three instances above mentioned. To repeat, it is not our intention here to improve on ADS/CFT theory but only to employ it for evaluating the corresponding Wheeler’s propagators.
Instituto de Física La Plata - Materia
-
Física
ADS/CFT correspondence
Boundary-bulk propagators
Feynman’s propagators
Wheeler’s propagators - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/119306
Ver los metadatos del registro completo
id |
SEDICI_15c2fd4a65deea11d87db9bcf78cca45 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/119306 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
How to Explicitly Calculate Feynman and Wheeler Propagators in the ADS/CFT CorrespondencePlastino, Ángel LuisRocca, Mario CarlosFísicaADS/CFT correspondenceBoundary-bulk propagatorsFeynman’s propagatorsWheeler’s propagatorsWe discuss, giving all necessary details, the boundary-bulk propagators. We do it for a scalar field, with and without mass, for both the Feynman and the Wheeler cases. Contrary to standard procedure, we do not need here to appeal to any unfounded conjecture (as done by other authors). Emphasize that we do not try to modify standard ADS/CFT procedures, but use them to evaluate the corresponding Feynman and Wheeler propagators. Our present calculations are original in the sense of being the first ones undertaken explicitly using distributions theory (DT). They are carried out in two instances: 1) when the boundary is a Euclidean space and 2) when it is of Minkowskian nature. In this last case we compute also three propagators: Feynman’s, Anti- Feynman’s, and Wheeler’s (half advanced plus half retarded). For an operator corresponding to a scalar field we explicitly obtain, for the first time ever, the two points’ correlations functions in the three instances above mentioned. To repeat, it is not our intention here to improve on ADS/CFT theory but only to employ it for evaluating the corresponding Wheeler’s propagators.Instituto de Física La Plata2020info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf304-323http://sedici.unlp.edu.ar/handle/10915/119306enginfo:eu-repo/semantics/altIdentifier/issn/2153-120Xinfo:eu-repo/semantics/altIdentifier/issn/2153-1196info:eu-repo/semantics/altIdentifier/doi/10.4236/jmp.2020.112019info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:28:09Zoai:sedici.unlp.edu.ar:10915/119306Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:28:09.856SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
How to Explicitly Calculate Feynman and Wheeler Propagators in the ADS/CFT Correspondence |
title |
How to Explicitly Calculate Feynman and Wheeler Propagators in the ADS/CFT Correspondence |
spellingShingle |
How to Explicitly Calculate Feynman and Wheeler Propagators in the ADS/CFT Correspondence Plastino, Ángel Luis Física ADS/CFT correspondence Boundary-bulk propagators Feynman’s propagators Wheeler’s propagators |
title_short |
How to Explicitly Calculate Feynman and Wheeler Propagators in the ADS/CFT Correspondence |
title_full |
How to Explicitly Calculate Feynman and Wheeler Propagators in the ADS/CFT Correspondence |
title_fullStr |
How to Explicitly Calculate Feynman and Wheeler Propagators in the ADS/CFT Correspondence |
title_full_unstemmed |
How to Explicitly Calculate Feynman and Wheeler Propagators in the ADS/CFT Correspondence |
title_sort |
How to Explicitly Calculate Feynman and Wheeler Propagators in the ADS/CFT Correspondence |
dc.creator.none.fl_str_mv |
Plastino, Ángel Luis Rocca, Mario Carlos |
author |
Plastino, Ángel Luis |
author_facet |
Plastino, Ángel Luis Rocca, Mario Carlos |
author_role |
author |
author2 |
Rocca, Mario Carlos |
author2_role |
author |
dc.subject.none.fl_str_mv |
Física ADS/CFT correspondence Boundary-bulk propagators Feynman’s propagators Wheeler’s propagators |
topic |
Física ADS/CFT correspondence Boundary-bulk propagators Feynman’s propagators Wheeler’s propagators |
dc.description.none.fl_txt_mv |
We discuss, giving all necessary details, the boundary-bulk propagators. We do it for a scalar field, with and without mass, for both the Feynman and the Wheeler cases. Contrary to standard procedure, we do not need here to appeal to any unfounded conjecture (as done by other authors). Emphasize that we do not try to modify standard ADS/CFT procedures, but use them to evaluate the corresponding Feynman and Wheeler propagators. Our present calculations are original in the sense of being the first ones undertaken explicitly using distributions theory (DT). They are carried out in two instances: 1) when the boundary is a Euclidean space and 2) when it is of Minkowskian nature. In this last case we compute also three propagators: Feynman’s, Anti- Feynman’s, and Wheeler’s (half advanced plus half retarded). For an operator corresponding to a scalar field we explicitly obtain, for the first time ever, the two points’ correlations functions in the three instances above mentioned. To repeat, it is not our intention here to improve on ADS/CFT theory but only to employ it for evaluating the corresponding Wheeler’s propagators. Instituto de Física La Plata |
description |
We discuss, giving all necessary details, the boundary-bulk propagators. We do it for a scalar field, with and without mass, for both the Feynman and the Wheeler cases. Contrary to standard procedure, we do not need here to appeal to any unfounded conjecture (as done by other authors). Emphasize that we do not try to modify standard ADS/CFT procedures, but use them to evaluate the corresponding Feynman and Wheeler propagators. Our present calculations are original in the sense of being the first ones undertaken explicitly using distributions theory (DT). They are carried out in two instances: 1) when the boundary is a Euclidean space and 2) when it is of Minkowskian nature. In this last case we compute also three propagators: Feynman’s, Anti- Feynman’s, and Wheeler’s (half advanced plus half retarded). For an operator corresponding to a scalar field we explicitly obtain, for the first time ever, the two points’ correlations functions in the three instances above mentioned. To repeat, it is not our intention here to improve on ADS/CFT theory but only to employ it for evaluating the corresponding Wheeler’s propagators. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/119306 |
url |
http://sedici.unlp.edu.ar/handle/10915/119306 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/2153-120X info:eu-repo/semantics/altIdentifier/issn/2153-1196 info:eu-repo/semantics/altIdentifier/doi/10.4236/jmp.2020.112019 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
dc.format.none.fl_str_mv |
application/pdf 304-323 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616159870058496 |
score |
13.070432 |