Proposta de implementação em hardware dedicado de redes neurais competitivas com técnicas de circuitos integrados analógicos

Autores
Engel, Paulo Martins; Molz, Rolf Fredi
Año de publicación
1998
Idioma
portugués
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
Neste trabalho apresenta-se uma proposta de uma técnica para implementação em hardware, das estruturas básicas de uma Rede Neural Competitiva, baseada em técnicas analógicas. Através desta proposta, será abordada uma das classes mais interessantes de Redes Neurais Artificiais (RNA) que são as Redes Neurais Competitivas (RNC), que possuem forte inspiração biológica. As equações fundamentais que descrevem o comportamento da RNC foram derivadas de estudos interdisciplinares, a maioria envolvendo observações neurofisiológicas. O estudo do neurônio biológico, por exemplo, nos leva à clássica equação da membrana. A técnica mostrada para a implementação das Redes Neurais Competitivas se baseia no uso das técnicas analógicas. Estas conduzem a um projeto mais compacto além de permitirem um processamento em tempo real, visto que o circuito computacional analógico altera simultaneamente e continuamente todos os estados dos neurônios que se encontram interligados em paralelo. Para esta proposta de implementação, é mostrado que as equações fundamentais que governam as Redes Neurais Competitivas possuem uma relação com componentes eletrônicos básicos, podendo então, serem implementados através destes simples componentes com os quais as equações fundamentais se relacionam. Para tanto, é mostrado por meio de simulações em software, o comportamento das equações fundamentais deste tipo de Redes Neurais, e então, é comparado este comportamento, com os obtidos através de simulações elétricas dos circuitos equivalentes oriundos destas equações fundamentais. Mostra-se também, em ambas as simulações, uma das características mais importantes existentes nos modelos de RNC, conhecida como Memória de Tempo Curto (STM). Por fim, é apresentada uma aplicação típica na área de clusterização de padrões utilizando pesos sinápticos, a fim de, demonstrar a implementação utilizando as técnicas descritas durante o trabalho. Esta aplicação é demonstrada através de uma simulação elétrica, sendo esta realizada por meio do simulador HSPICE. Tal aplicação demonstra o correto desempenho da proposta deste trabalho.
Sistemas Inteligentes
Red de Universidades con Carreras en Informática (RedUNCI)
Materia
Ciencias Informáticas
Informática
redes neurais artificiais
redes neurais competitivas
implementação em hardware
técnicas analógicas
Neural nets
Analog computers
Network management
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/24567

id SEDICI_1594c25f496ef66f1a3c22a544468e72
oai_identifier_str oai:sedici.unlp.edu.ar:10915/24567
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Proposta de implementação em hardware dedicado de redes neurais competitivas com técnicas de circuitos integrados analógicosEngel, Paulo MartinsMolz, Rolf FrediCiencias InformáticasInformáticaredes neurais artificiaisredes neurais competitivasimplementação em hardwaretécnicas analógicasNeural netsAnalog computersNetwork managementNeste trabalho apresenta-se uma proposta de uma técnica para implementação em hardware, das estruturas básicas de uma Rede Neural Competitiva, baseada em técnicas analógicas. Através desta proposta, será abordada uma das classes mais interessantes de Redes Neurais Artificiais (RNA) que são as Redes Neurais Competitivas (RNC), que possuem forte inspiração biológica. As equações fundamentais que descrevem o comportamento da RNC foram derivadas de estudos interdisciplinares, a maioria envolvendo observações neurofisiológicas. O estudo do neurônio biológico, por exemplo, nos leva à clássica equação da membrana. A técnica mostrada para a implementação das Redes Neurais Competitivas se baseia no uso das técnicas analógicas. Estas conduzem a um projeto mais compacto além de permitirem um processamento em tempo real, visto que o circuito computacional analógico altera simultaneamente e continuamente todos os estados dos neurônios que se encontram interligados em paralelo. Para esta proposta de implementação, é mostrado que as equações fundamentais que governam as Redes Neurais Competitivas possuem uma relação com componentes eletrônicos básicos, podendo então, serem implementados através destes simples componentes com os quais as equações fundamentais se relacionam. Para tanto, é mostrado por meio de simulações em software, o comportamento das equações fundamentais deste tipo de Redes Neurais, e então, é comparado este comportamento, com os obtidos através de simulações elétricas dos circuitos equivalentes oriundos destas equações fundamentais. Mostra-se também, em ambas as simulações, uma das características mais importantes existentes nos modelos de RNC, conhecida como Memória de Tempo Curto (STM). Por fim, é apresentada uma aplicação típica na área de clusterização de padrões utilizando pesos sinápticos, a fim de, demonstrar a implementação utilizando as técnicas descritas durante o trabalho. Esta aplicação é demonstrada através de uma simulação elétrica, sendo esta realizada por meio do simulador HSPICE. Tal aplicação demonstra o correto desempenho da proposta deste trabalho.Sistemas InteligentesRed de Universidades con Carreras en Informática (RedUNCI)1998-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/24567info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)porreponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T10:48:33Zoai:sedici.unlp.edu.ar:10915/24567Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 10:48:33.447SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Proposta de implementação em hardware dedicado de redes neurais competitivas com técnicas de circuitos integrados analógicos
title Proposta de implementação em hardware dedicado de redes neurais competitivas com técnicas de circuitos integrados analógicos
spellingShingle Proposta de implementação em hardware dedicado de redes neurais competitivas com técnicas de circuitos integrados analógicos
Engel, Paulo Martins
Ciencias Informáticas
Informática
redes neurais artificiais
redes neurais competitivas
implementação em hardware
técnicas analógicas
Neural nets
Analog computers
Network management
title_short Proposta de implementação em hardware dedicado de redes neurais competitivas com técnicas de circuitos integrados analógicos
title_full Proposta de implementação em hardware dedicado de redes neurais competitivas com técnicas de circuitos integrados analógicos
title_fullStr Proposta de implementação em hardware dedicado de redes neurais competitivas com técnicas de circuitos integrados analógicos
title_full_unstemmed Proposta de implementação em hardware dedicado de redes neurais competitivas com técnicas de circuitos integrados analógicos
title_sort Proposta de implementação em hardware dedicado de redes neurais competitivas com técnicas de circuitos integrados analógicos
dc.creator.none.fl_str_mv Engel, Paulo Martins
Molz, Rolf Fredi
author Engel, Paulo Martins
author_facet Engel, Paulo Martins
Molz, Rolf Fredi
author_role author
author2 Molz, Rolf Fredi
author2_role author
dc.subject.none.fl_str_mv Ciencias Informáticas
Informática
redes neurais artificiais
redes neurais competitivas
implementação em hardware
técnicas analógicas
Neural nets
Analog computers
Network management
topic Ciencias Informáticas
Informática
redes neurais artificiais
redes neurais competitivas
implementação em hardware
técnicas analógicas
Neural nets
Analog computers
Network management
dc.description.none.fl_txt_mv Neste trabalho apresenta-se uma proposta de uma técnica para implementação em hardware, das estruturas básicas de uma Rede Neural Competitiva, baseada em técnicas analógicas. Através desta proposta, será abordada uma das classes mais interessantes de Redes Neurais Artificiais (RNA) que são as Redes Neurais Competitivas (RNC), que possuem forte inspiração biológica. As equações fundamentais que descrevem o comportamento da RNC foram derivadas de estudos interdisciplinares, a maioria envolvendo observações neurofisiológicas. O estudo do neurônio biológico, por exemplo, nos leva à clássica equação da membrana. A técnica mostrada para a implementação das Redes Neurais Competitivas se baseia no uso das técnicas analógicas. Estas conduzem a um projeto mais compacto além de permitirem um processamento em tempo real, visto que o circuito computacional analógico altera simultaneamente e continuamente todos os estados dos neurônios que se encontram interligados em paralelo. Para esta proposta de implementação, é mostrado que as equações fundamentais que governam as Redes Neurais Competitivas possuem uma relação com componentes eletrônicos básicos, podendo então, serem implementados através destes simples componentes com os quais as equações fundamentais se relacionam. Para tanto, é mostrado por meio de simulações em software, o comportamento das equações fundamentais deste tipo de Redes Neurais, e então, é comparado este comportamento, com os obtidos através de simulações elétricas dos circuitos equivalentes oriundos destas equações fundamentais. Mostra-se também, em ambas as simulações, uma das características mais importantes existentes nos modelos de RNC, conhecida como Memória de Tempo Curto (STM). Por fim, é apresentada uma aplicação típica na área de clusterização de padrões utilizando pesos sinápticos, a fim de, demonstrar a implementação utilizando as técnicas descritas durante o trabalho. Esta aplicação é demonstrada através de uma simulação elétrica, sendo esta realizada por meio do simulador HSPICE. Tal aplicação demonstra o correto desempenho da proposta deste trabalho.
Sistemas Inteligentes
Red de Universidades con Carreras en Informática (RedUNCI)
description Neste trabalho apresenta-se uma proposta de uma técnica para implementação em hardware, das estruturas básicas de uma Rede Neural Competitiva, baseada em técnicas analógicas. Através desta proposta, será abordada uma das classes mais interessantes de Redes Neurais Artificiais (RNA) que são as Redes Neurais Competitivas (RNC), que possuem forte inspiração biológica. As equações fundamentais que descrevem o comportamento da RNC foram derivadas de estudos interdisciplinares, a maioria envolvendo observações neurofisiológicas. O estudo do neurônio biológico, por exemplo, nos leva à clássica equação da membrana. A técnica mostrada para a implementação das Redes Neurais Competitivas se baseia no uso das técnicas analógicas. Estas conduzem a um projeto mais compacto além de permitirem um processamento em tempo real, visto que o circuito computacional analógico altera simultaneamente e continuamente todos os estados dos neurônios que se encontram interligados em paralelo. Para esta proposta de implementação, é mostrado que as equações fundamentais que governam as Redes Neurais Competitivas possuem uma relação com componentes eletrônicos básicos, podendo então, serem implementados através destes simples componentes com os quais as equações fundamentais se relacionam. Para tanto, é mostrado por meio de simulações em software, o comportamento das equações fundamentais deste tipo de Redes Neurais, e então, é comparado este comportamento, com os obtidos através de simulações elétricas dos circuitos equivalentes oriundos destas equações fundamentais. Mostra-se também, em ambas as simulações, uma das características mais importantes existentes nos modelos de RNC, conhecida como Memória de Tempo Curto (STM). Por fim, é apresentada uma aplicação típica na área de clusterização de padrões utilizando pesos sinápticos, a fim de, demonstrar a implementação utilizando as técnicas descritas durante o trabalho. Esta aplicação é demonstrada através de uma simulação elétrica, sendo esta realizada por meio do simulador HSPICE. Tal aplicação demonstra o correto desempenho da proposta deste trabalho.
publishDate 1998
dc.date.none.fl_str_mv 1998-10
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/24567
url http://sedici.unlp.edu.ar/handle/10915/24567
dc.language.none.fl_str_mv por
language por
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846063913324511232
score 13.22299