A novel algorithm with IM-LSI index for incremental maintenance of materialized view

Autores
Rangarajan, K.; Kumaravel, A.; Nalini, T.
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The ability to afford decision makers with both accurate and timely consolidated information as well as rapid query response times is the fundamental requirement for the success of a Data Warehouse. To provide fast access, a data warehouse stores materialized views of the sources of its data. As a result, a data warehouse needs to be maintained to keep its contents consistent with the contents of its data sources. Incremental maintenance is generally regarded as a more efficient way to maintain materialized views in a data warehouse The view has to be maintained to reflect the updates done against the base relations stored at the various distributed data sources. The proposed approach contains two modules namely, materialized view selection(MVS) and maintenance of materialized view. (MMV). In recent times, several algorithms have been proposed for keeping the views up-to-date in response to the changes in the source data. Therefore, we present an improved algorithm for MVS and MMV using IM-LSI(Itemset Mining using Latent Semantic Index) algorithm. selection of views to materialize using the IM(Itemset Mining) algorithm method to overcome the problem resulting from conventional view selection algorithms and then we consider the maintenance of materialized views using LSI. For the justification of the proposed algorithm, we reveal the experimental results in which both time and space costs better than conventional algorithms.
Facultad de Informática
Materia
Informática
I-mine item set index
FP growth
LSI index
Data warehouse and repository
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc/3.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/9712

id SEDICI_14cb01e66aacb96b074342bd6409fa8d
oai_identifier_str oai:sedici.unlp.edu.ar:10915/9712
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling A novel algorithm with IM-LSI index for incremental maintenance of materialized viewRangarajan, K.Kumaravel, A.Nalini, T.InformáticaI-mine item set indexFP growthLSI indexData warehouse and repositoryThe ability to afford decision makers with both accurate and timely consolidated information as well as rapid query response times is the fundamental requirement for the success of a Data Warehouse. To provide fast access, a data warehouse stores materialized views of the sources of its data. As a result, a data warehouse needs to be maintained to keep its contents consistent with the contents of its data sources. Incremental maintenance is generally regarded as a more efficient way to maintain materialized views in a data warehouse The view has to be maintained to reflect the updates done against the base relations stored at the various distributed data sources. The proposed approach contains two modules namely, materialized view selection(MVS) and maintenance of materialized view. (MMV). In recent times, several algorithms have been proposed for keeping the views up-to-date in response to the changes in the source data. Therefore, we present an improved algorithm for MVS and MMV using IM-LSI(Itemset Mining using Latent Semantic Index) algorithm. selection of views to materialize using the IM(Itemset Mining) algorithm method to overcome the problem resulting from conventional view selection algorithms and then we consider the maintenance of materialized views using LSI. For the justification of the proposed algorithm, we reveal the experimental results in which both time and space costs better than conventional algorithms.Facultad de Informática2012-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf32-38http://sedici.unlp.edu.ar/handle/10915/9712enginfo:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/wp-content/uploads/JCST-Apr12-6.pdfinfo:eu-repo/semantics/altIdentifier/issn/1666-6038info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc/3.0/Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T10:50:48Zoai:sedici.unlp.edu.ar:10915/9712Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 10:50:49.05SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv A novel algorithm with IM-LSI index for incremental maintenance of materialized view
title A novel algorithm with IM-LSI index for incremental maintenance of materialized view
spellingShingle A novel algorithm with IM-LSI index for incremental maintenance of materialized view
Rangarajan, K.
Informática
I-mine item set index
FP growth
LSI index
Data warehouse and repository
title_short A novel algorithm with IM-LSI index for incremental maintenance of materialized view
title_full A novel algorithm with IM-LSI index for incremental maintenance of materialized view
title_fullStr A novel algorithm with IM-LSI index for incremental maintenance of materialized view
title_full_unstemmed A novel algorithm with IM-LSI index for incremental maintenance of materialized view
title_sort A novel algorithm with IM-LSI index for incremental maintenance of materialized view
dc.creator.none.fl_str_mv Rangarajan, K.
Kumaravel, A.
Nalini, T.
author Rangarajan, K.
author_facet Rangarajan, K.
Kumaravel, A.
Nalini, T.
author_role author
author2 Kumaravel, A.
Nalini, T.
author2_role author
author
dc.subject.none.fl_str_mv Informática
I-mine item set index
FP growth
LSI index
Data warehouse and repository
topic Informática
I-mine item set index
FP growth
LSI index
Data warehouse and repository
dc.description.none.fl_txt_mv The ability to afford decision makers with both accurate and timely consolidated information as well as rapid query response times is the fundamental requirement for the success of a Data Warehouse. To provide fast access, a data warehouse stores materialized views of the sources of its data. As a result, a data warehouse needs to be maintained to keep its contents consistent with the contents of its data sources. Incremental maintenance is generally regarded as a more efficient way to maintain materialized views in a data warehouse The view has to be maintained to reflect the updates done against the base relations stored at the various distributed data sources. The proposed approach contains two modules namely, materialized view selection(MVS) and maintenance of materialized view. (MMV). In recent times, several algorithms have been proposed for keeping the views up-to-date in response to the changes in the source data. Therefore, we present an improved algorithm for MVS and MMV using IM-LSI(Itemset Mining using Latent Semantic Index) algorithm. selection of views to materialize using the IM(Itemset Mining) algorithm method to overcome the problem resulting from conventional view selection algorithms and then we consider the maintenance of materialized views using LSI. For the justification of the proposed algorithm, we reveal the experimental results in which both time and space costs better than conventional algorithms.
Facultad de Informática
description The ability to afford decision makers with both accurate and timely consolidated information as well as rapid query response times is the fundamental requirement for the success of a Data Warehouse. To provide fast access, a data warehouse stores materialized views of the sources of its data. As a result, a data warehouse needs to be maintained to keep its contents consistent with the contents of its data sources. Incremental maintenance is generally regarded as a more efficient way to maintain materialized views in a data warehouse The view has to be maintained to reflect the updates done against the base relations stored at the various distributed data sources. The proposed approach contains two modules namely, materialized view selection(MVS) and maintenance of materialized view. (MMV). In recent times, several algorithms have been proposed for keeping the views up-to-date in response to the changes in the source data. Therefore, we present an improved algorithm for MVS and MMV using IM-LSI(Itemset Mining using Latent Semantic Index) algorithm. selection of views to materialize using the IM(Itemset Mining) algorithm method to overcome the problem resulting from conventional view selection algorithms and then we consider the maintenance of materialized views using LSI. For the justification of the proposed algorithm, we reveal the experimental results in which both time and space costs better than conventional algorithms.
publishDate 2012
dc.date.none.fl_str_mv 2012-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/9712
url http://sedici.unlp.edu.ar/handle/10915/9712
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/wp-content/uploads/JCST-Apr12-6.pdf
info:eu-repo/semantics/altIdentifier/issn/1666-6038
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc/3.0/
Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc/3.0/
Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0)
dc.format.none.fl_str_mv application/pdf
32-38
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844615758868381696
score 13.070432