Accessing nanotube bands via crossed electric and magnetic fields

Autores
DeGottardi, Wade; Wei, Tzu-Chieh; Fernández, Victoria Inés; Vishveshwara, Smitha
Año de publicación
2010
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We investigate the properties of conduction electrons in single-walled armchair carbon nanotubes in the presence of mutually orthogonal electric and magnetic fields transverse to the tube's axis. We find that the fields give rise to an asymmetric dispersion in the right- and left-moving electrons along the tube as well as a band-dependent interaction. We predict that such a nanotube system would exhibit spin-band-charge separation and a band-dependant tunneling density of states. We show that in the quantum dot limit, the fields serve to completely tune the quantum states of electrons added to the nanotube. For each of the predicted effects, we provide examples and estimates that are relevant to experiment.
Instituto de Física La Plata
Materia
Física
Magnetic field
Quantum tunnelling
Physics
Quantum dot
Electron
Carbon nanotube quantum dot
Condensed matter physics
Nanotube
Carbon nanotube
Density of states
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/126009

id SEDICI_11bcef2b3a9fceaaa7c9cc537966a5c8
oai_identifier_str oai:sedici.unlp.edu.ar:10915/126009
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Accessing nanotube bands via crossed electric and magnetic fieldsDeGottardi, WadeWei, Tzu-ChiehFernández, Victoria InésVishveshwara, SmithaFísicaMagnetic fieldQuantum tunnellingPhysicsQuantum dotElectronCarbon nanotube quantum dotCondensed matter physicsNanotubeCarbon nanotubeDensity of statesWe investigate the properties of conduction electrons in single-walled armchair carbon nanotubes in the presence of mutually orthogonal electric and magnetic fields transverse to the tube's axis. We find that the fields give rise to an asymmetric dispersion in the right- and left-moving electrons along the tube as well as a band-dependent interaction. We predict that such a nanotube system would exhibit spin-band-charge separation and a band-dependant tunneling density of states. We show that in the quantum dot limit, the fields serve to completely tune the quantum states of electrons added to the nanotube. For each of the predicted effects, we provide examples and estimates that are relevant to experiment.Instituto de Física La Plata2010-10-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/126009enginfo:eu-repo/semantics/altIdentifier/issn/1098-0121info:eu-repo/semantics/altIdentifier/issn/1550-235Xinfo:eu-repo/semantics/altIdentifier/arxiv/0912.4937info:eu-repo/semantics/altIdentifier/doi/10.1103/physrevb.82.155411info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T17:11:11Zoai:sedici.unlp.edu.ar:10915/126009Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 17:11:12.208SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Accessing nanotube bands via crossed electric and magnetic fields
title Accessing nanotube bands via crossed electric and magnetic fields
spellingShingle Accessing nanotube bands via crossed electric and magnetic fields
DeGottardi, Wade
Física
Magnetic field
Quantum tunnelling
Physics
Quantum dot
Electron
Carbon nanotube quantum dot
Condensed matter physics
Nanotube
Carbon nanotube
Density of states
title_short Accessing nanotube bands via crossed electric and magnetic fields
title_full Accessing nanotube bands via crossed electric and magnetic fields
title_fullStr Accessing nanotube bands via crossed electric and magnetic fields
title_full_unstemmed Accessing nanotube bands via crossed electric and magnetic fields
title_sort Accessing nanotube bands via crossed electric and magnetic fields
dc.creator.none.fl_str_mv DeGottardi, Wade
Wei, Tzu-Chieh
Fernández, Victoria Inés
Vishveshwara, Smitha
author DeGottardi, Wade
author_facet DeGottardi, Wade
Wei, Tzu-Chieh
Fernández, Victoria Inés
Vishveshwara, Smitha
author_role author
author2 Wei, Tzu-Chieh
Fernández, Victoria Inés
Vishveshwara, Smitha
author2_role author
author
author
dc.subject.none.fl_str_mv Física
Magnetic field
Quantum tunnelling
Physics
Quantum dot
Electron
Carbon nanotube quantum dot
Condensed matter physics
Nanotube
Carbon nanotube
Density of states
topic Física
Magnetic field
Quantum tunnelling
Physics
Quantum dot
Electron
Carbon nanotube quantum dot
Condensed matter physics
Nanotube
Carbon nanotube
Density of states
dc.description.none.fl_txt_mv We investigate the properties of conduction electrons in single-walled armchair carbon nanotubes in the presence of mutually orthogonal electric and magnetic fields transverse to the tube's axis. We find that the fields give rise to an asymmetric dispersion in the right- and left-moving electrons along the tube as well as a band-dependent interaction. We predict that such a nanotube system would exhibit spin-band-charge separation and a band-dependant tunneling density of states. We show that in the quantum dot limit, the fields serve to completely tune the quantum states of electrons added to the nanotube. For each of the predicted effects, we provide examples and estimates that are relevant to experiment.
Instituto de Física La Plata
description We investigate the properties of conduction electrons in single-walled armchair carbon nanotubes in the presence of mutually orthogonal electric and magnetic fields transverse to the tube's axis. We find that the fields give rise to an asymmetric dispersion in the right- and left-moving electrons along the tube as well as a band-dependent interaction. We predict that such a nanotube system would exhibit spin-band-charge separation and a band-dependant tunneling density of states. We show that in the quantum dot limit, the fields serve to completely tune the quantum states of electrons added to the nanotube. For each of the predicted effects, we provide examples and estimates that are relevant to experiment.
publishDate 2010
dc.date.none.fl_str_mv 2010-10-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/126009
url http://sedici.unlp.edu.ar/handle/10915/126009
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/1098-0121
info:eu-repo/semantics/altIdentifier/issn/1550-235X
info:eu-repo/semantics/altIdentifier/arxiv/0912.4937
info:eu-repo/semantics/altIdentifier/doi/10.1103/physrevb.82.155411
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846783459270328320
score 12.982451