Selection rules for the excitation of quantum dots by spatially structured light beams: Application to the reconstruction of higher excited exciton wave functions

Autores
Holtkemper, M.; Quinteiro, Guillermo Federico; Reiter, D.E.; Kuhn, T.
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Spatially structured light fields applied to semiconductor quantum dots yield fundamentally different absorption spectra than homogeneous beams. In this paper, we provide a detailed theoretical discussion of the resulting spectra for different light beams using a cylindrical multipole expansion. For the description of the quantum dots we employ a model based on the envelope function approximation including Coulomb interaction and valence band mixing. The combination of a single spatially structured light beam and state mixing allows all exciton states in the quantum dot to become optically addressable. Furthermore, we demonstrate that the beams can be tailored such that single states are selectively excited, without the need of spectral separation. Using this selectivity, we propose a method to measure the exciton wave function of the quantum dot eigenstate. The measurement goes beyond electron density measurements by revealing the spatial phase information of the exciton wave function. Such an extraction of phase information is known from polarization-sensitive measurements; however, here the infinitely large spatial degree of freedom can be accessed by the beam profile in addition to the two-dimensional polarization degree of freedom.
Fil: Holtkemper, M.. Westfälische Wilhelms Universität; Alemania
Fil: Quinteiro, Guillermo Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; Argentina. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura. Departamento de Física; Argentina
Fil: Reiter, D.E.. Westfälische Wilhelms Universität; Alemania
Fil: Kuhn, T.. Westfälische Wilhelms Universität; Alemania
Materia
OPTICAL VORTEX
QUANTUM DOT
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/171431

id CONICETDig_1361289cbb3d187db2e58e27659a412f
oai_identifier_str oai:ri.conicet.gov.ar:11336/171431
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Selection rules for the excitation of quantum dots by spatially structured light beams: Application to the reconstruction of higher excited exciton wave functionsHoltkemper, M.Quinteiro, Guillermo FedericoReiter, D.E.Kuhn, T.OPTICAL VORTEXQUANTUM DOThttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Spatially structured light fields applied to semiconductor quantum dots yield fundamentally different absorption spectra than homogeneous beams. In this paper, we provide a detailed theoretical discussion of the resulting spectra for different light beams using a cylindrical multipole expansion. For the description of the quantum dots we employ a model based on the envelope function approximation including Coulomb interaction and valence band mixing. The combination of a single spatially structured light beam and state mixing allows all exciton states in the quantum dot to become optically addressable. Furthermore, we demonstrate that the beams can be tailored such that single states are selectively excited, without the need of spectral separation. Using this selectivity, we propose a method to measure the exciton wave function of the quantum dot eigenstate. The measurement goes beyond electron density measurements by revealing the spatial phase information of the exciton wave function. Such an extraction of phase information is known from polarization-sensitive measurements; however, here the infinitely large spatial degree of freedom can be accessed by the beam profile in addition to the two-dimensional polarization degree of freedom.Fil: Holtkemper, M.. Westfälische Wilhelms Universität; AlemaniaFil: Quinteiro, Guillermo Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; Argentina. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura. Departamento de Física; ArgentinaFil: Reiter, D.E.. Westfälische Wilhelms Universität; AlemaniaFil: Kuhn, T.. Westfälische Wilhelms Universität; AlemaniaAmerican Physical Society2020-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/171431Holtkemper, M.; Quinteiro, Guillermo Federico; Reiter, D.E.; Kuhn, T.; Selection rules for the excitation of quantum dots by spatially structured light beams: Application to the reconstruction of higher excited exciton wave functions; American Physical Society; Physical Review B: Condensed Matter and Materials Physics; 102; 16; 10-2020; 1-182469-99502469-9969CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prb/abstract/10.1103/PhysRevB.102.165315info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevB.102.165315info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:10:48Zoai:ri.conicet.gov.ar:11336/171431instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:10:49.12CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Selection rules for the excitation of quantum dots by spatially structured light beams: Application to the reconstruction of higher excited exciton wave functions
title Selection rules for the excitation of quantum dots by spatially structured light beams: Application to the reconstruction of higher excited exciton wave functions
spellingShingle Selection rules for the excitation of quantum dots by spatially structured light beams: Application to the reconstruction of higher excited exciton wave functions
Holtkemper, M.
OPTICAL VORTEX
QUANTUM DOT
title_short Selection rules for the excitation of quantum dots by spatially structured light beams: Application to the reconstruction of higher excited exciton wave functions
title_full Selection rules for the excitation of quantum dots by spatially structured light beams: Application to the reconstruction of higher excited exciton wave functions
title_fullStr Selection rules for the excitation of quantum dots by spatially structured light beams: Application to the reconstruction of higher excited exciton wave functions
title_full_unstemmed Selection rules for the excitation of quantum dots by spatially structured light beams: Application to the reconstruction of higher excited exciton wave functions
title_sort Selection rules for the excitation of quantum dots by spatially structured light beams: Application to the reconstruction of higher excited exciton wave functions
dc.creator.none.fl_str_mv Holtkemper, M.
Quinteiro, Guillermo Federico
Reiter, D.E.
Kuhn, T.
author Holtkemper, M.
author_facet Holtkemper, M.
Quinteiro, Guillermo Federico
Reiter, D.E.
Kuhn, T.
author_role author
author2 Quinteiro, Guillermo Federico
Reiter, D.E.
Kuhn, T.
author2_role author
author
author
dc.subject.none.fl_str_mv OPTICAL VORTEX
QUANTUM DOT
topic OPTICAL VORTEX
QUANTUM DOT
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Spatially structured light fields applied to semiconductor quantum dots yield fundamentally different absorption spectra than homogeneous beams. In this paper, we provide a detailed theoretical discussion of the resulting spectra for different light beams using a cylindrical multipole expansion. For the description of the quantum dots we employ a model based on the envelope function approximation including Coulomb interaction and valence band mixing. The combination of a single spatially structured light beam and state mixing allows all exciton states in the quantum dot to become optically addressable. Furthermore, we demonstrate that the beams can be tailored such that single states are selectively excited, without the need of spectral separation. Using this selectivity, we propose a method to measure the exciton wave function of the quantum dot eigenstate. The measurement goes beyond electron density measurements by revealing the spatial phase information of the exciton wave function. Such an extraction of phase information is known from polarization-sensitive measurements; however, here the infinitely large spatial degree of freedom can be accessed by the beam profile in addition to the two-dimensional polarization degree of freedom.
Fil: Holtkemper, M.. Westfälische Wilhelms Universität; Alemania
Fil: Quinteiro, Guillermo Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; Argentina. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura. Departamento de Física; Argentina
Fil: Reiter, D.E.. Westfälische Wilhelms Universität; Alemania
Fil: Kuhn, T.. Westfälische Wilhelms Universität; Alemania
description Spatially structured light fields applied to semiconductor quantum dots yield fundamentally different absorption spectra than homogeneous beams. In this paper, we provide a detailed theoretical discussion of the resulting spectra for different light beams using a cylindrical multipole expansion. For the description of the quantum dots we employ a model based on the envelope function approximation including Coulomb interaction and valence band mixing. The combination of a single spatially structured light beam and state mixing allows all exciton states in the quantum dot to become optically addressable. Furthermore, we demonstrate that the beams can be tailored such that single states are selectively excited, without the need of spectral separation. Using this selectivity, we propose a method to measure the exciton wave function of the quantum dot eigenstate. The measurement goes beyond electron density measurements by revealing the spatial phase information of the exciton wave function. Such an extraction of phase information is known from polarization-sensitive measurements; however, here the infinitely large spatial degree of freedom can be accessed by the beam profile in addition to the two-dimensional polarization degree of freedom.
publishDate 2020
dc.date.none.fl_str_mv 2020-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/171431
Holtkemper, M.; Quinteiro, Guillermo Federico; Reiter, D.E.; Kuhn, T.; Selection rules for the excitation of quantum dots by spatially structured light beams: Application to the reconstruction of higher excited exciton wave functions; American Physical Society; Physical Review B: Condensed Matter and Materials Physics; 102; 16; 10-2020; 1-18
2469-9950
2469-9969
CONICET Digital
CONICET
url http://hdl.handle.net/11336/171431
identifier_str_mv Holtkemper, M.; Quinteiro, Guillermo Federico; Reiter, D.E.; Kuhn, T.; Selection rules for the excitation of quantum dots by spatially structured light beams: Application to the reconstruction of higher excited exciton wave functions; American Physical Society; Physical Review B: Condensed Matter and Materials Physics; 102; 16; 10-2020; 1-18
2469-9950
2469-9969
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prb/abstract/10.1103/PhysRevB.102.165315
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevB.102.165315
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083256305319936
score 13.22299