Semantic document indexing in ontology-driven organizational memories
- Autores
- Ale, María Alejandra; Galli, María Rosa; Chiotti, Omar Juan Alfredo
- Año de publicación
- 2005
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Effective document retrieval using domain knowledge and semantics is one of the major challenges in Information Retrieval. Over the last years, there has been a growing interest in ontologies as an artifact for human knowledge representation and a critical component in Knowledge Management, Semantic Web, and Business-to-Business applications. We have found that it is not easy to represent certain types of knowledge (skills or procedures) or to transform certain types of knowledge representation (knowledge contained in diagrams) into an appropriate ontological format. To overcome this problem, our proposal is to connect knowledge sources to the domain ontology associated with an Organizational Memory without forcing any transformation in the structure of the source itself. This connection will allow the semantic classification of knowledge sources so that when a user performs a query it is possible to recover the documents that have a higher probability of containing the answer.
II Workshop de Ingeniería de Software y Bases de Datos (WISBD)
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
Information Search and Retrieval
gestión de conocimientos
Semantics
domain ontology
organizational memory - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/23100
Ver los metadatos del registro completo
id |
SEDICI_11263041a25c03258f2e513fe266d6c1 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/23100 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Semantic document indexing in ontology-driven organizational memoriesAle, María AlejandraGalli, María RosaChiotti, Omar Juan AlfredoCiencias InformáticasInformation Search and Retrievalgestión de conocimientosSemanticsdomain ontologyorganizational memoryEffective document retrieval using domain knowledge and semantics is one of the major challenges in Information Retrieval. Over the last years, there has been a growing interest in ontologies as an artifact for human knowledge representation and a critical component in Knowledge Management, Semantic Web, and Business-to-Business applications. We have found that it is not easy to represent certain types of knowledge (skills or procedures) or to transform certain types of knowledge representation (knowledge contained in diagrams) into an appropriate ontological format. To overcome this problem, our proposal is to connect knowledge sources to the domain ontology associated with an Organizational Memory without forcing any transformation in the structure of the source itself. This connection will allow the semantic classification of knowledge sources so that when a user performs a query it is possible to recover the documents that have a higher probability of containing the answer.II Workshop de Ingeniería de Software y Bases de Datos (WISBD)Red de Universidades con Carreras en Informática (RedUNCI)2005-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/23100enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T10:55:20Zoai:sedici.unlp.edu.ar:10915/23100Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 10:55:20.962SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Semantic document indexing in ontology-driven organizational memories |
title |
Semantic document indexing in ontology-driven organizational memories |
spellingShingle |
Semantic document indexing in ontology-driven organizational memories Ale, María Alejandra Ciencias Informáticas Information Search and Retrieval gestión de conocimientos Semantics domain ontology organizational memory |
title_short |
Semantic document indexing in ontology-driven organizational memories |
title_full |
Semantic document indexing in ontology-driven organizational memories |
title_fullStr |
Semantic document indexing in ontology-driven organizational memories |
title_full_unstemmed |
Semantic document indexing in ontology-driven organizational memories |
title_sort |
Semantic document indexing in ontology-driven organizational memories |
dc.creator.none.fl_str_mv |
Ale, María Alejandra Galli, María Rosa Chiotti, Omar Juan Alfredo |
author |
Ale, María Alejandra |
author_facet |
Ale, María Alejandra Galli, María Rosa Chiotti, Omar Juan Alfredo |
author_role |
author |
author2 |
Galli, María Rosa Chiotti, Omar Juan Alfredo |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Information Search and Retrieval gestión de conocimientos Semantics domain ontology organizational memory |
topic |
Ciencias Informáticas Information Search and Retrieval gestión de conocimientos Semantics domain ontology organizational memory |
dc.description.none.fl_txt_mv |
Effective document retrieval using domain knowledge and semantics is one of the major challenges in Information Retrieval. Over the last years, there has been a growing interest in ontologies as an artifact for human knowledge representation and a critical component in Knowledge Management, Semantic Web, and Business-to-Business applications. We have found that it is not easy to represent certain types of knowledge (skills or procedures) or to transform certain types of knowledge representation (knowledge contained in diagrams) into an appropriate ontological format. To overcome this problem, our proposal is to connect knowledge sources to the domain ontology associated with an Organizational Memory without forcing any transformation in the structure of the source itself. This connection will allow the semantic classification of knowledge sources so that when a user performs a query it is possible to recover the documents that have a higher probability of containing the answer. II Workshop de Ingeniería de Software y Bases de Datos (WISBD) Red de Universidades con Carreras en Informática (RedUNCI) |
description |
Effective document retrieval using domain knowledge and semantics is one of the major challenges in Information Retrieval. Over the last years, there has been a growing interest in ontologies as an artifact for human knowledge representation and a critical component in Knowledge Management, Semantic Web, and Business-to-Business applications. We have found that it is not easy to represent certain types of knowledge (skills or procedures) or to transform certain types of knowledge representation (knowledge contained in diagrams) into an appropriate ontological format. To overcome this problem, our proposal is to connect knowledge sources to the domain ontology associated with an Organizational Memory without forcing any transformation in the structure of the source itself. This connection will allow the semantic classification of knowledge sources so that when a user performs a query it is possible to recover the documents that have a higher probability of containing the answer. |
publishDate |
2005 |
dc.date.none.fl_str_mv |
2005-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/23100 |
url |
http://sedici.unlp.edu.ar/handle/10915/23100 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844615811906404352 |
score |
13.070432 |