Chemical Stability of Mesoporous Oxide Thin Film Electrodes under Electrochemical Cycling: from Dissolution to Stabilization

Autores
Alberti, Sebastián; Steinberg, Paula Y.; Giménez, Gustavo; Amenitsch, Heinz; Ybarra, Gabriel; Azzaroni, Omar; Angelomé, Paula C.; Soler-Illia, Galo J. A. A.
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Mesoporous oxide thin films (MOTF) present very high surface areas and highly controlled monodisperse pores in the nanometer range. These features spurred their possible applications in separation membranes and permselective electrodes. However, their performance in real applications is limited by their reactivity. Here, we perform a basic study of the stability of MOTF toward dissolution in aqueous media using a variety of characterization techniques. In particular, we focus in their stability behavior under the influence of ionic strength, adsorption of electrochemical probes, and applied electrode potential. Mesoporous silica thin films present a limited chemical stability after electrochemical cycling, particularly under high ionic strength, due to their high specific surface area and the interactions between the electrochemical probes and the surface. In contrast, TiO₂ or Si0.9Zr0.1O₂ matrices present higher stability; thus, they are an adequate alternative to produce accessible, sensitive, and robust permselective electrodes or membranes that perform under a wide variety of conditions.
Facultad de Ciencias Exactas
Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas
Materia
Ciencias Exactas
Química
Mesoporous oxide thin films (MOTF)
stability
ionic strength
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/123753

id SEDICI_111176470c622234d79a5dd9ddd78779
oai_identifier_str oai:sedici.unlp.edu.ar:10915/123753
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Chemical Stability of Mesoporous Oxide Thin Film Electrodes under Electrochemical Cycling: from Dissolution to StabilizationAlberti, SebastiánSteinberg, Paula Y.Giménez, GustavoAmenitsch, HeinzYbarra, GabrielAzzaroni, OmarAngelomé, Paula C.Soler-Illia, Galo J. A. A.Ciencias ExactasQuímicaMesoporous oxide thin films (MOTF)stabilityionic strengthMesoporous oxide thin films (MOTF) present very high surface areas and highly controlled monodisperse pores in the nanometer range. These features spurred their possible applications in separation membranes and permselective electrodes. However, their performance in real applications is limited by their reactivity. Here, we perform a basic study of the stability of MOTF toward dissolution in aqueous media using a variety of characterization techniques. In particular, we focus in their stability behavior under the influence of ionic strength, adsorption of electrochemical probes, and applied electrode potential. Mesoporous silica thin films present a limited chemical stability after electrochemical cycling, particularly under high ionic strength, due to their high specific surface area and the interactions between the electrochemical probes and the surface. In contrast, TiO₂ or Si<sub>0.9</sub>Zr<sub>0.1</sub>O₂ matrices present higher stability; thus, they are an adequate alternative to produce accessible, sensitive, and robust permselective electrodes or membranes that perform under a wide variety of conditions.Facultad de Ciencias ExactasInstituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas2019-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf6279-6287http://sedici.unlp.edu.ar/handle/10915/123753enginfo:eu-repo/semantics/altIdentifier/issn/1520-5827info:eu-repo/semantics/altIdentifier/issn/0743-7463info:eu-repo/semantics/altIdentifier/pmid/30990724info:eu-repo/semantics/altIdentifier/doi/10.1021/acs.langmuir.9b00224info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T17:10:25Zoai:sedici.unlp.edu.ar:10915/123753Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 17:10:25.472SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Chemical Stability of Mesoporous Oxide Thin Film Electrodes under Electrochemical Cycling: from Dissolution to Stabilization
title Chemical Stability of Mesoporous Oxide Thin Film Electrodes under Electrochemical Cycling: from Dissolution to Stabilization
spellingShingle Chemical Stability of Mesoporous Oxide Thin Film Electrodes under Electrochemical Cycling: from Dissolution to Stabilization
Alberti, Sebastián
Ciencias Exactas
Química
Mesoporous oxide thin films (MOTF)
stability
ionic strength
title_short Chemical Stability of Mesoporous Oxide Thin Film Electrodes under Electrochemical Cycling: from Dissolution to Stabilization
title_full Chemical Stability of Mesoporous Oxide Thin Film Electrodes under Electrochemical Cycling: from Dissolution to Stabilization
title_fullStr Chemical Stability of Mesoporous Oxide Thin Film Electrodes under Electrochemical Cycling: from Dissolution to Stabilization
title_full_unstemmed Chemical Stability of Mesoporous Oxide Thin Film Electrodes under Electrochemical Cycling: from Dissolution to Stabilization
title_sort Chemical Stability of Mesoporous Oxide Thin Film Electrodes under Electrochemical Cycling: from Dissolution to Stabilization
dc.creator.none.fl_str_mv Alberti, Sebastián
Steinberg, Paula Y.
Giménez, Gustavo
Amenitsch, Heinz
Ybarra, Gabriel
Azzaroni, Omar
Angelomé, Paula C.
Soler-Illia, Galo J. A. A.
author Alberti, Sebastián
author_facet Alberti, Sebastián
Steinberg, Paula Y.
Giménez, Gustavo
Amenitsch, Heinz
Ybarra, Gabriel
Azzaroni, Omar
Angelomé, Paula C.
Soler-Illia, Galo J. A. A.
author_role author
author2 Steinberg, Paula Y.
Giménez, Gustavo
Amenitsch, Heinz
Ybarra, Gabriel
Azzaroni, Omar
Angelomé, Paula C.
Soler-Illia, Galo J. A. A.
author2_role author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Ciencias Exactas
Química
Mesoporous oxide thin films (MOTF)
stability
ionic strength
topic Ciencias Exactas
Química
Mesoporous oxide thin films (MOTF)
stability
ionic strength
dc.description.none.fl_txt_mv Mesoporous oxide thin films (MOTF) present very high surface areas and highly controlled monodisperse pores in the nanometer range. These features spurred their possible applications in separation membranes and permselective electrodes. However, their performance in real applications is limited by their reactivity. Here, we perform a basic study of the stability of MOTF toward dissolution in aqueous media using a variety of characterization techniques. In particular, we focus in their stability behavior under the influence of ionic strength, adsorption of electrochemical probes, and applied electrode potential. Mesoporous silica thin films present a limited chemical stability after electrochemical cycling, particularly under high ionic strength, due to their high specific surface area and the interactions between the electrochemical probes and the surface. In contrast, TiO₂ or Si<sub>0.9</sub>Zr<sub>0.1</sub>O₂ matrices present higher stability; thus, they are an adequate alternative to produce accessible, sensitive, and robust permselective electrodes or membranes that perform under a wide variety of conditions.
Facultad de Ciencias Exactas
Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas
description Mesoporous oxide thin films (MOTF) present very high surface areas and highly controlled monodisperse pores in the nanometer range. These features spurred their possible applications in separation membranes and permselective electrodes. However, their performance in real applications is limited by their reactivity. Here, we perform a basic study of the stability of MOTF toward dissolution in aqueous media using a variety of characterization techniques. In particular, we focus in their stability behavior under the influence of ionic strength, adsorption of electrochemical probes, and applied electrode potential. Mesoporous silica thin films present a limited chemical stability after electrochemical cycling, particularly under high ionic strength, due to their high specific surface area and the interactions between the electrochemical probes and the surface. In contrast, TiO₂ or Si<sub>0.9</sub>Zr<sub>0.1</sub>O₂ matrices present higher stability; thus, they are an adequate alternative to produce accessible, sensitive, and robust permselective electrodes or membranes that perform under a wide variety of conditions.
publishDate 2019
dc.date.none.fl_str_mv 2019-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/123753
url http://sedici.unlp.edu.ar/handle/10915/123753
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/1520-5827
info:eu-repo/semantics/altIdentifier/issn/0743-7463
info:eu-repo/semantics/altIdentifier/pmid/30990724
info:eu-repo/semantics/altIdentifier/doi/10.1021/acs.langmuir.9b00224
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
6279-6287
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846783441050271744
score 12.982451