Negociación aplicada a recomendación a grupos: un estudio sobre usuarios en el dominio de películas
- Autores
- Villavicencio, Christian; Schiaffino, Silvia; Díaz Pace, J. Andrés; Monteserin, Ariel
- Año de publicación
- 2017
- Idioma
- español castellano
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Providing recommendations to groups of users has become popular in many applications today. Even though there are several group recommendation techniques, the generation of recommendations that satisfy the group members in an even way remains a challenge. Because of this, we have developed a multi-agent approach called MAGReS that relies on negotiation techniques to improve group recommendations. Our approach was tested (on the movies domain) using synthetic data with satisfactory results. Given that the results when using synthetic data may sometimes differ with reality, we decided to assess MAGReS using data from real users. The results obtained showed firstly that, in comparison with the recommendations produced by a traditional approach, the recommendations of MAGReS produce a greater level of satisfaction to the group, and secondly that the proposed approach was able to predict more accurately the satisfaction levels of the group members.
Sociedad Argentina de Informática e Investigación Operativa - Materia
-
Ciencias Informáticas
sistema de recomendación
Intelligent agents
Multiagent systems
grupo de usuarios - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/65948
Ver los metadatos del registro completo
id |
SEDICI_10733d1cac4c4d397260a46012809382 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/65948 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Negociación aplicada a recomendación a grupos: un estudio sobre usuarios en el dominio de películasVillavicencio, ChristianSchiaffino, SilviaDíaz Pace, J. AndrésMonteserin, ArielCiencias Informáticassistema de recomendaciónIntelligent agentsMultiagent systemsgrupo de usuariosProviding recommendations to groups of users has become popular in many applications today. Even though there are several group recommendation techniques, the generation of recommendations that satisfy the group members in an even way remains a challenge. Because of this, we have developed a multi-agent approach called MAGReS that relies on negotiation techniques to improve group recommendations. Our approach was tested (on the movies domain) using synthetic data with satisfactory results. Given that the results when using synthetic data may sometimes differ with reality, we decided to assess MAGReS using data from real users. The results obtained showed firstly that, in comparison with the recommendations produced by a traditional approach, the recommendations of MAGReS produce a greater level of satisfaction to the group, and secondly that the proposed approach was able to predict more accurately the satisfaction levels of the group members.Sociedad Argentina de Informática e Investigación Operativa2017-09info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf90-99http://sedici.unlp.edu.ar/handle/10915/65948spainfo:eu-repo/semantics/altIdentifier/url/http://www.clei2017-46jaiio.sadio.org.ar/sites/default/files/Mem/ASAI/asai-12.pdfinfo:eu-repo/semantics/altIdentifier/issn/2451-7585info:eu-repo/semantics/reference/hdl/10915/135217info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-sa/4.0/Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-17T09:52:35Zoai:sedici.unlp.edu.ar:10915/65948Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-17 09:52:36.066SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Negociación aplicada a recomendación a grupos: un estudio sobre usuarios en el dominio de películas |
title |
Negociación aplicada a recomendación a grupos: un estudio sobre usuarios en el dominio de películas |
spellingShingle |
Negociación aplicada a recomendación a grupos: un estudio sobre usuarios en el dominio de películas Villavicencio, Christian Ciencias Informáticas sistema de recomendación Intelligent agents Multiagent systems grupo de usuarios |
title_short |
Negociación aplicada a recomendación a grupos: un estudio sobre usuarios en el dominio de películas |
title_full |
Negociación aplicada a recomendación a grupos: un estudio sobre usuarios en el dominio de películas |
title_fullStr |
Negociación aplicada a recomendación a grupos: un estudio sobre usuarios en el dominio de películas |
title_full_unstemmed |
Negociación aplicada a recomendación a grupos: un estudio sobre usuarios en el dominio de películas |
title_sort |
Negociación aplicada a recomendación a grupos: un estudio sobre usuarios en el dominio de películas |
dc.creator.none.fl_str_mv |
Villavicencio, Christian Schiaffino, Silvia Díaz Pace, J. Andrés Monteserin, Ariel |
author |
Villavicencio, Christian |
author_facet |
Villavicencio, Christian Schiaffino, Silvia Díaz Pace, J. Andrés Monteserin, Ariel |
author_role |
author |
author2 |
Schiaffino, Silvia Díaz Pace, J. Andrés Monteserin, Ariel |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas sistema de recomendación Intelligent agents Multiagent systems grupo de usuarios |
topic |
Ciencias Informáticas sistema de recomendación Intelligent agents Multiagent systems grupo de usuarios |
dc.description.none.fl_txt_mv |
Providing recommendations to groups of users has become popular in many applications today. Even though there are several group recommendation techniques, the generation of recommendations that satisfy the group members in an even way remains a challenge. Because of this, we have developed a multi-agent approach called MAGReS that relies on negotiation techniques to improve group recommendations. Our approach was tested (on the movies domain) using synthetic data with satisfactory results. Given that the results when using synthetic data may sometimes differ with reality, we decided to assess MAGReS using data from real users. The results obtained showed firstly that, in comparison with the recommendations produced by a traditional approach, the recommendations of MAGReS produce a greater level of satisfaction to the group, and secondly that the proposed approach was able to predict more accurately the satisfaction levels of the group members. Sociedad Argentina de Informática e Investigación Operativa |
description |
Providing recommendations to groups of users has become popular in many applications today. Even though there are several group recommendation techniques, the generation of recommendations that satisfy the group members in an even way remains a challenge. Because of this, we have developed a multi-agent approach called MAGReS that relies on negotiation techniques to improve group recommendations. Our approach was tested (on the movies domain) using synthetic data with satisfactory results. Given that the results when using synthetic data may sometimes differ with reality, we decided to assess MAGReS using data from real users. The results obtained showed firstly that, in comparison with the recommendations produced by a traditional approach, the recommendations of MAGReS produce a greater level of satisfaction to the group, and secondly that the proposed approach was able to predict more accurately the satisfaction levels of the group members. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/65948 |
url |
http://sedici.unlp.edu.ar/handle/10915/65948 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.clei2017-46jaiio.sadio.org.ar/sites/default/files/Mem/ASAI/asai-12.pdf info:eu-repo/semantics/altIdentifier/issn/2451-7585 info:eu-repo/semantics/reference/hdl/10915/135217 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-sa/4.0/ Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-sa/4.0/ Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 90-99 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1843532334049001472 |
score |
13.001348 |