Using Neural Networks to improve classical Operating System Fingerprinting techniques
- Autores
- Sarraute, Carlos; Burroni, Javier
- Año de publicación
- 2008
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We present remote Operating System detection as an inference problem: given a set of observations (the target host responses to a set of tests), we want to infer the OS type which most probably generated these observations. Classical techniques used to perform this analysis present several limitations. To improve the analysis, we have developed tools using neural networks and Statistics tools. We present two working modules: one which uses DCE-RPC endpoints to distinguish Windows versions, and another which uses Nmap signatures to distinguish different version of Windows, Linux, Solaris, OpenBSD, FreeBSD and NetBSD systems. We explain the details of the topology and inner workings of the neural networks used, and the fine tuning of their parameters. Finally we show positive experimental results.
Sociedad Argentina de Informática e Investigación Operativa - Materia
-
Ciencias Informáticas
Neural networks
OS Fingerprinting
DCE-RPC endpoint mapper - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/135408
Ver los metadatos del registro completo
id |
SEDICI_0ff9696634f494b0acd4e250ee19fe33 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/135408 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Using Neural Networks to improve classical Operating System Fingerprinting techniquesSarraute, CarlosBurroni, JavierCiencias InformáticasNeural networksOS FingerprintingDCE-RPC endpoint mapperWe present remote Operating System detection as an inference problem: given a set of observations (the target host responses to a set of tests), we want to infer the OS type which most probably generated these observations. Classical techniques used to perform this analysis present several limitations. To improve the analysis, we have developed tools using neural networks and Statistics tools. We present two working modules: one which uses DCE-RPC endpoints to distinguish Windows versions, and another which uses Nmap signatures to distinguish different version of Windows, Linux, Solaris, OpenBSD, FreeBSD and NetBSD systems. We explain the details of the topology and inner workings of the neural networks used, and the fine tuning of their parameters. Finally we show positive experimental results.Sociedad Argentina de Informática e Investigación Operativa2008-06-26info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf35-47http://sedici.unlp.edu.ar/handle/10915/135408enginfo:eu-repo/semantics/altIdentifier/url/https://publicaciones.sadio.org.ar/index.php/EJS/article/view/98info:eu-repo/semantics/altIdentifier/issn/1514-6774info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:34:01Zoai:sedici.unlp.edu.ar:10915/135408Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:34:01.684SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Using Neural Networks to improve classical Operating System Fingerprinting techniques |
title |
Using Neural Networks to improve classical Operating System Fingerprinting techniques |
spellingShingle |
Using Neural Networks to improve classical Operating System Fingerprinting techniques Sarraute, Carlos Ciencias Informáticas Neural networks OS Fingerprinting DCE-RPC endpoint mapper |
title_short |
Using Neural Networks to improve classical Operating System Fingerprinting techniques |
title_full |
Using Neural Networks to improve classical Operating System Fingerprinting techniques |
title_fullStr |
Using Neural Networks to improve classical Operating System Fingerprinting techniques |
title_full_unstemmed |
Using Neural Networks to improve classical Operating System Fingerprinting techniques |
title_sort |
Using Neural Networks to improve classical Operating System Fingerprinting techniques |
dc.creator.none.fl_str_mv |
Sarraute, Carlos Burroni, Javier |
author |
Sarraute, Carlos |
author_facet |
Sarraute, Carlos Burroni, Javier |
author_role |
author |
author2 |
Burroni, Javier |
author2_role |
author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Neural networks OS Fingerprinting DCE-RPC endpoint mapper |
topic |
Ciencias Informáticas Neural networks OS Fingerprinting DCE-RPC endpoint mapper |
dc.description.none.fl_txt_mv |
We present remote Operating System detection as an inference problem: given a set of observations (the target host responses to a set of tests), we want to infer the OS type which most probably generated these observations. Classical techniques used to perform this analysis present several limitations. To improve the analysis, we have developed tools using neural networks and Statistics tools. We present two working modules: one which uses DCE-RPC endpoints to distinguish Windows versions, and another which uses Nmap signatures to distinguish different version of Windows, Linux, Solaris, OpenBSD, FreeBSD and NetBSD systems. We explain the details of the topology and inner workings of the neural networks used, and the fine tuning of their parameters. Finally we show positive experimental results. Sociedad Argentina de Informática e Investigación Operativa |
description |
We present remote Operating System detection as an inference problem: given a set of observations (the target host responses to a set of tests), we want to infer the OS type which most probably generated these observations. Classical techniques used to perform this analysis present several limitations. To improve the analysis, we have developed tools using neural networks and Statistics tools. We present two working modules: one which uses DCE-RPC endpoints to distinguish Windows versions, and another which uses Nmap signatures to distinguish different version of Windows, Linux, Solaris, OpenBSD, FreeBSD and NetBSD systems. We explain the details of the topology and inner workings of the neural networks used, and the fine tuning of their parameters. Finally we show positive experimental results. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008-06-26 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/135408 |
url |
http://sedici.unlp.edu.ar/handle/10915/135408 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://publicaciones.sadio.org.ar/index.php/EJS/article/view/98 info:eu-repo/semantics/altIdentifier/issn/1514-6774 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
dc.format.none.fl_str_mv |
application/pdf 35-47 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616220150595584 |
score |
13.070432 |