Sampling Formulae and Optimal Factorizations of Projections

Autores
Andruchow, Esteban; Antezana, Jorge Abel; Corach, Gustavo
Año de publicación
2008
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Let H be a Hilbert space, W a closed subspace of H, and Q a (linear bounded) projection from H onto W with null space M⊥. We study decompositions like Qf = ∑n∊ℕ 〈 f, hn〉 fn, where {fn}n∊ℕ and {hn}n∊ℕ are frames for the subspaces W and M, respectively. This type of decompositions corresponds to sampling formulae. By considering the synthesis operator F (resp. H) of the sequence {fn}n∊ℕ (resp. {hn}n∊ℕ), the formula above can be expressed as the factorization Q = FH*. We study different properties of these factorizations and decompositions of oblique and orthogonal projections. Several characterizations of these decompositions are presented. By means of an operator inequality for positive operators, we get a result which minimizes the norm of F — H.
Facultad de Ciencias Exactas
Facultad de Ingeniería
Materia
Matemática
Sampling
Projections
Frames
Generalized inverses
Shift invarian
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/142790

id SEDICI_0fe147e101c658f3db88536b5d08fc18
oai_identifier_str oai:sedici.unlp.edu.ar:10915/142790
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Sampling Formulae and Optimal Factorizations of ProjectionsAndruchow, EstebanAntezana, Jorge AbelCorach, GustavoMatemáticaSamplingProjectionsFramesGeneralized inversesShift invarianLet H be a Hilbert space, W a closed subspace of H, and Q a (linear bounded) projection from H onto W with null space M⊥. We study decompositions like Qf = ∑n∊ℕ 〈 f, hn〉 fn, where {fn}n∊ℕ and {hn}n∊ℕ are frames for the subspaces W and M, respectively. This type of decompositions corresponds to sampling formulae. By considering the synthesis operator F (resp. H) of the sequence {fn}n∊ℕ (resp. {hn}n∊ℕ), the formula above can be expressed as the factorization Q = FH*. We study different properties of these factorizations and decompositions of oblique and orthogonal projections. Several characterizations of these decompositions are presented. By means of an operator inequality for positive operators, we get a result which minimizes the norm of F — H.Facultad de Ciencias ExactasFacultad de Ingeniería2008-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf313-331http://sedici.unlp.edu.ar/handle/10915/142790enginfo:eu-repo/semantics/altIdentifier/issn/1530-6429info:eu-repo/semantics/altIdentifier/doi/10.1007/bf03549503info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T11:24:24Zoai:sedici.unlp.edu.ar:10915/142790Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 11:24:25.096SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Sampling Formulae and Optimal Factorizations of Projections
title Sampling Formulae and Optimal Factorizations of Projections
spellingShingle Sampling Formulae and Optimal Factorizations of Projections
Andruchow, Esteban
Matemática
Sampling
Projections
Frames
Generalized inverses
Shift invarian
title_short Sampling Formulae and Optimal Factorizations of Projections
title_full Sampling Formulae and Optimal Factorizations of Projections
title_fullStr Sampling Formulae and Optimal Factorizations of Projections
title_full_unstemmed Sampling Formulae and Optimal Factorizations of Projections
title_sort Sampling Formulae and Optimal Factorizations of Projections
dc.creator.none.fl_str_mv Andruchow, Esteban
Antezana, Jorge Abel
Corach, Gustavo
author Andruchow, Esteban
author_facet Andruchow, Esteban
Antezana, Jorge Abel
Corach, Gustavo
author_role author
author2 Antezana, Jorge Abel
Corach, Gustavo
author2_role author
author
dc.subject.none.fl_str_mv Matemática
Sampling
Projections
Frames
Generalized inverses
Shift invarian
topic Matemática
Sampling
Projections
Frames
Generalized inverses
Shift invarian
dc.description.none.fl_txt_mv Let H be a Hilbert space, W a closed subspace of H, and Q a (linear bounded) projection from H onto W with null space M⊥. We study decompositions like Qf = ∑n∊ℕ 〈 f, hn〉 fn, where {fn}n∊ℕ and {hn}n∊ℕ are frames for the subspaces W and M, respectively. This type of decompositions corresponds to sampling formulae. By considering the synthesis operator F (resp. H) of the sequence {fn}n∊ℕ (resp. {hn}n∊ℕ), the formula above can be expressed as the factorization Q = FH*. We study different properties of these factorizations and decompositions of oblique and orthogonal projections. Several characterizations of these decompositions are presented. By means of an operator inequality for positive operators, we get a result which minimizes the norm of F — H.
Facultad de Ciencias Exactas
Facultad de Ingeniería
description Let H be a Hilbert space, W a closed subspace of H, and Q a (linear bounded) projection from H onto W with null space M⊥. We study decompositions like Qf = ∑n∊ℕ 〈 f, hn〉 fn, where {fn}n∊ℕ and {hn}n∊ℕ are frames for the subspaces W and M, respectively. This type of decompositions corresponds to sampling formulae. By considering the synthesis operator F (resp. H) of the sequence {fn}n∊ℕ (resp. {hn}n∊ℕ), the formula above can be expressed as the factorization Q = FH*. We study different properties of these factorizations and decompositions of oblique and orthogonal projections. Several characterizations of these decompositions are presented. By means of an operator inequality for positive operators, we get a result which minimizes the norm of F — H.
publishDate 2008
dc.date.none.fl_str_mv 2008-09-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/142790
url http://sedici.unlp.edu.ar/handle/10915/142790
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/1530-6429
info:eu-repo/semantics/altIdentifier/doi/10.1007/bf03549503
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
313-331
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846064297942188032
score 13.22299