Multiple reflection expansion and heat kernel coefficients
- Autores
- Bordag, M.; Vassilievich, D.; Falomir, Horacio Alberto; Santángelo, Eve Mariel
- Año de publicación
- 2001
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We propose the multiple reflection expansion as a tool for the calculation of heat kernel coefficients. As an example, we give the coefficients for a sphere as a finite sum over reflections, obtaining as a byproduct, a relation between the coefficients for Dirichlet and Neumann boundary conditions. Further, we calculate the heat kernel coefficients for the most general matching conditions on the surface of a sphere, including those cases corresponding to the presence of delta and delta prime background potentials. In the latter case, the multiple reflection expansion is shown to be nonconvergent.
Facultad de Ciencias Exactas - Materia
-
Ciencias Exactas
Física
heat kernel
multiple reflection expansion - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/104421
Ver los metadatos del registro completo
id |
SEDICI_0e3c9e46fd5cc44dea04de2ee3c7b62e |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/104421 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Multiple reflection expansion and heat kernel coefficientsBordag, M.Vassilievich, D.Falomir, Horacio AlbertoSantángelo, Eve MarielCiencias ExactasFísicaheat kernelmultiple reflection expansionWe propose the multiple reflection expansion as a tool for the calculation of heat kernel coefficients. As an example, we give the coefficients for a sphere as a finite sum over reflections, obtaining as a byproduct, a relation between the coefficients for Dirichlet and Neumann boundary conditions. Further, we calculate the heat kernel coefficients for the most general matching conditions on the surface of a sphere, including those cases corresponding to the presence of delta and delta prime background potentials. In the latter case, the multiple reflection expansion is shown to be nonconvergent.Facultad de Ciencias Exactas2001info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/104421enginfo:eu-repo/semantics/altIdentifier/url/http://hdl.handle.net/11336/98116info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prd/abstract/10.1103/PhysRevD.64.045017info:eu-repo/semantics/altIdentifier/issn/0556-2821info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.64.045017info:eu-repo/semantics/altIdentifier/hdl/11336/98116info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:22:47Zoai:sedici.unlp.edu.ar:10915/104421Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:22:48.284SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Multiple reflection expansion and heat kernel coefficients |
title |
Multiple reflection expansion and heat kernel coefficients |
spellingShingle |
Multiple reflection expansion and heat kernel coefficients Bordag, M. Ciencias Exactas Física heat kernel multiple reflection expansion |
title_short |
Multiple reflection expansion and heat kernel coefficients |
title_full |
Multiple reflection expansion and heat kernel coefficients |
title_fullStr |
Multiple reflection expansion and heat kernel coefficients |
title_full_unstemmed |
Multiple reflection expansion and heat kernel coefficients |
title_sort |
Multiple reflection expansion and heat kernel coefficients |
dc.creator.none.fl_str_mv |
Bordag, M. Vassilievich, D. Falomir, Horacio Alberto Santángelo, Eve Mariel |
author |
Bordag, M. |
author_facet |
Bordag, M. Vassilievich, D. Falomir, Horacio Alberto Santángelo, Eve Mariel |
author_role |
author |
author2 |
Vassilievich, D. Falomir, Horacio Alberto Santángelo, Eve Mariel |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Ciencias Exactas Física heat kernel multiple reflection expansion |
topic |
Ciencias Exactas Física heat kernel multiple reflection expansion |
dc.description.none.fl_txt_mv |
We propose the multiple reflection expansion as a tool for the calculation of heat kernel coefficients. As an example, we give the coefficients for a sphere as a finite sum over reflections, obtaining as a byproduct, a relation between the coefficients for Dirichlet and Neumann boundary conditions. Further, we calculate the heat kernel coefficients for the most general matching conditions on the surface of a sphere, including those cases corresponding to the presence of delta and delta prime background potentials. In the latter case, the multiple reflection expansion is shown to be nonconvergent. Facultad de Ciencias Exactas |
description |
We propose the multiple reflection expansion as a tool for the calculation of heat kernel coefficients. As an example, we give the coefficients for a sphere as a finite sum over reflections, obtaining as a byproduct, a relation between the coefficients for Dirichlet and Neumann boundary conditions. Further, we calculate the heat kernel coefficients for the most general matching conditions on the surface of a sphere, including those cases corresponding to the presence of delta and delta prime background potentials. In the latter case, the multiple reflection expansion is shown to be nonconvergent. |
publishDate |
2001 |
dc.date.none.fl_str_mv |
2001 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/104421 |
url |
http://sedici.unlp.edu.ar/handle/10915/104421 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://hdl.handle.net/11336/98116 info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prd/abstract/10.1103/PhysRevD.64.045017 info:eu-repo/semantics/altIdentifier/issn/0556-2821 info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.64.045017 info:eu-repo/semantics/altIdentifier/hdl/11336/98116 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616103994589184 |
score |
13.070432 |