Multiple reflection expansion and heat kernel coefficients

Autores
Bordag, M.; Vassilievich, D.; Falomir, Horacio Alberto; Santángelo, Eve Mariel
Año de publicación
2001
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We propose the multiple reflection expansion as a tool for the calculation of heat kernel coefficients. As an example, we give the coefficients for a sphere as a finite sum over reflections, obtaining as a byproduct, a relation between the coefficients for Dirichlet and Neumann boundary conditions. Further, we calculate the heat kernel coefficients for the most general matching conditions on the surface of a sphere, including those cases corresponding to the presence of delta and delta prime background potentials. In the latter case, the multiple reflection expansion is shown to be nonconvergent.
Facultad de Ciencias Exactas
Materia
Ciencias Exactas
Física
heat kernel
multiple reflection expansion
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/104421

id SEDICI_0e3c9e46fd5cc44dea04de2ee3c7b62e
oai_identifier_str oai:sedici.unlp.edu.ar:10915/104421
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Multiple reflection expansion and heat kernel coefficientsBordag, M.Vassilievich, D.Falomir, Horacio AlbertoSantángelo, Eve MarielCiencias ExactasFísicaheat kernelmultiple reflection expansionWe propose the multiple reflection expansion as a tool for the calculation of heat kernel coefficients. As an example, we give the coefficients for a sphere as a finite sum over reflections, obtaining as a byproduct, a relation between the coefficients for Dirichlet and Neumann boundary conditions. Further, we calculate the heat kernel coefficients for the most general matching conditions on the surface of a sphere, including those cases corresponding to the presence of delta and delta prime background potentials. In the latter case, the multiple reflection expansion is shown to be nonconvergent.Facultad de Ciencias Exactas2001info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/104421enginfo:eu-repo/semantics/altIdentifier/url/http://hdl.handle.net/11336/98116info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prd/abstract/10.1103/PhysRevD.64.045017info:eu-repo/semantics/altIdentifier/issn/0556-2821info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.64.045017info:eu-repo/semantics/altIdentifier/hdl/11336/98116info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:22:47Zoai:sedici.unlp.edu.ar:10915/104421Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:22:48.284SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Multiple reflection expansion and heat kernel coefficients
title Multiple reflection expansion and heat kernel coefficients
spellingShingle Multiple reflection expansion and heat kernel coefficients
Bordag, M.
Ciencias Exactas
Física
heat kernel
multiple reflection expansion
title_short Multiple reflection expansion and heat kernel coefficients
title_full Multiple reflection expansion and heat kernel coefficients
title_fullStr Multiple reflection expansion and heat kernel coefficients
title_full_unstemmed Multiple reflection expansion and heat kernel coefficients
title_sort Multiple reflection expansion and heat kernel coefficients
dc.creator.none.fl_str_mv Bordag, M.
Vassilievich, D.
Falomir, Horacio Alberto
Santángelo, Eve Mariel
author Bordag, M.
author_facet Bordag, M.
Vassilievich, D.
Falomir, Horacio Alberto
Santángelo, Eve Mariel
author_role author
author2 Vassilievich, D.
Falomir, Horacio Alberto
Santángelo, Eve Mariel
author2_role author
author
author
dc.subject.none.fl_str_mv Ciencias Exactas
Física
heat kernel
multiple reflection expansion
topic Ciencias Exactas
Física
heat kernel
multiple reflection expansion
dc.description.none.fl_txt_mv We propose the multiple reflection expansion as a tool for the calculation of heat kernel coefficients. As an example, we give the coefficients for a sphere as a finite sum over reflections, obtaining as a byproduct, a relation between the coefficients for Dirichlet and Neumann boundary conditions. Further, we calculate the heat kernel coefficients for the most general matching conditions on the surface of a sphere, including those cases corresponding to the presence of delta and delta prime background potentials. In the latter case, the multiple reflection expansion is shown to be nonconvergent.
Facultad de Ciencias Exactas
description We propose the multiple reflection expansion as a tool for the calculation of heat kernel coefficients. As an example, we give the coefficients for a sphere as a finite sum over reflections, obtaining as a byproduct, a relation between the coefficients for Dirichlet and Neumann boundary conditions. Further, we calculate the heat kernel coefficients for the most general matching conditions on the surface of a sphere, including those cases corresponding to the presence of delta and delta prime background potentials. In the latter case, the multiple reflection expansion is shown to be nonconvergent.
publishDate 2001
dc.date.none.fl_str_mv 2001
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/104421
url http://sedici.unlp.edu.ar/handle/10915/104421
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://hdl.handle.net/11336/98116
info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prd/abstract/10.1103/PhysRevD.64.045017
info:eu-repo/semantics/altIdentifier/issn/0556-2821
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.64.045017
info:eu-repo/semantics/altIdentifier/hdl/11336/98116
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616103994589184
score 13.070432