Engaging end-user driven recommender systems : Personalization through web augmentation
- Autores
- Wischenbart, Martin; Firmenich, Sergio Damián; Rossi, Gustavo Héctor; Bosetti, Gabriela Alejandra; Kapsammer, Elisabeth
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In the past decades recommender systems have become a powerful tool to improve personalization on the Web. Yet, many popular websites lack such functionality, its implementation usually requires certain technical skills, and, above all, its introduction is beyond the scope and control of end-users. To alleviate these problems, this paper presents a novel tool to empower end-users without programming skills, without any involvement of website providers, to embed personalized recommendations of items into arbitrary websites on client-side. For this we have developed a generic meta-model to capture recommender system configuration parameters in general as well as in a web augmentation context. Thereupon, we have implemented a wizard in the form of an easy-to-use browser plug-in, allowing the generation of so-called user scripts, which are executed in the browser to engage collaborative filtering functionality from a provided external rest service. We discuss functionality and limitations of the approach, and in a study with end-users we assess the usability and show its suitability for combining recommender systems with web augmentation techniques, aiming to empower end-users to implement controllable recommender applications for a more personalized browsing experience.
Laboratorio de Investigación y Formación en Informática Avanzada - Materia
-
Informática
Web augmentation
Visual programming
Client-side personalization
End-user programming
End-user development
Controllability of recommender systems
Browser-side trans-coding - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/138770
Ver los metadatos del registro completo
id |
SEDICI_0c71dfe6b656401469ca2e67d5bd2ddd |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/138770 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Engaging end-user driven recommender systems : Personalization through web augmentationWischenbart, MartinFirmenich, Sergio DamiánRossi, Gustavo HéctorBosetti, Gabriela AlejandraKapsammer, ElisabethInformáticaWeb augmentationVisual programmingClient-side personalizationEnd-user programmingEnd-user developmentControllability of recommender systemsBrowser-side trans-codingIn the past decades recommender systems have become a powerful tool to improve personalization on the Web. Yet, many popular websites lack such functionality, its implementation usually requires certain technical skills, and, above all, its introduction is beyond the scope and control of end-users. To alleviate these problems, this paper presents a novel tool to empower end-users without programming skills, without any involvement of website providers, to embed personalized recommendations of items into arbitrary websites on client-side. For this we have developed a generic meta-model to capture recommender system configuration parameters in general as well as in a web augmentation context. Thereupon, we have implemented a wizard in the form of an easy-to-use browser plug-in, allowing the generation of so-called user scripts, which are executed in the browser to engage collaborative filtering functionality from a provided external rest service. We discuss functionality and limitations of the approach, and in a study with end-users we assess the usability and show its suitability for combining recommender systems with web augmentation techniques, aiming to empower end-users to implement controllable recommender applications for a more personalized browsing experience.Laboratorio de Investigación y Formación en Informática Avanzada2021info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf6785-6809http://sedici.unlp.edu.ar/handle/10915/138770enginfo:eu-repo/semantics/altIdentifier/issn/1380-7501info:eu-repo/semantics/altIdentifier/issn/1573-7721info:eu-repo/semantics/altIdentifier/doi/10.1007/s11042-020-09803-8info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T11:03:54Zoai:sedici.unlp.edu.ar:10915/138770Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 11:03:54.398SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Engaging end-user driven recommender systems : Personalization through web augmentation |
title |
Engaging end-user driven recommender systems : Personalization through web augmentation |
spellingShingle |
Engaging end-user driven recommender systems : Personalization through web augmentation Wischenbart, Martin Informática Web augmentation Visual programming Client-side personalization End-user programming End-user development Controllability of recommender systems Browser-side trans-coding |
title_short |
Engaging end-user driven recommender systems : Personalization through web augmentation |
title_full |
Engaging end-user driven recommender systems : Personalization through web augmentation |
title_fullStr |
Engaging end-user driven recommender systems : Personalization through web augmentation |
title_full_unstemmed |
Engaging end-user driven recommender systems : Personalization through web augmentation |
title_sort |
Engaging end-user driven recommender systems : Personalization through web augmentation |
dc.creator.none.fl_str_mv |
Wischenbart, Martin Firmenich, Sergio Damián Rossi, Gustavo Héctor Bosetti, Gabriela Alejandra Kapsammer, Elisabeth |
author |
Wischenbart, Martin |
author_facet |
Wischenbart, Martin Firmenich, Sergio Damián Rossi, Gustavo Héctor Bosetti, Gabriela Alejandra Kapsammer, Elisabeth |
author_role |
author |
author2 |
Firmenich, Sergio Damián Rossi, Gustavo Héctor Bosetti, Gabriela Alejandra Kapsammer, Elisabeth |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Informática Web augmentation Visual programming Client-side personalization End-user programming End-user development Controllability of recommender systems Browser-side trans-coding |
topic |
Informática Web augmentation Visual programming Client-side personalization End-user programming End-user development Controllability of recommender systems Browser-side trans-coding |
dc.description.none.fl_txt_mv |
In the past decades recommender systems have become a powerful tool to improve personalization on the Web. Yet, many popular websites lack such functionality, its implementation usually requires certain technical skills, and, above all, its introduction is beyond the scope and control of end-users. To alleviate these problems, this paper presents a novel tool to empower end-users without programming skills, without any involvement of website providers, to embed personalized recommendations of items into arbitrary websites on client-side. For this we have developed a generic meta-model to capture recommender system configuration parameters in general as well as in a web augmentation context. Thereupon, we have implemented a wizard in the form of an easy-to-use browser plug-in, allowing the generation of so-called user scripts, which are executed in the browser to engage collaborative filtering functionality from a provided external rest service. We discuss functionality and limitations of the approach, and in a study with end-users we assess the usability and show its suitability for combining recommender systems with web augmentation techniques, aiming to empower end-users to implement controllable recommender applications for a more personalized browsing experience. Laboratorio de Investigación y Formación en Informática Avanzada |
description |
In the past decades recommender systems have become a powerful tool to improve personalization on the Web. Yet, many popular websites lack such functionality, its implementation usually requires certain technical skills, and, above all, its introduction is beyond the scope and control of end-users. To alleviate these problems, this paper presents a novel tool to empower end-users without programming skills, without any involvement of website providers, to embed personalized recommendations of items into arbitrary websites on client-side. For this we have developed a generic meta-model to capture recommender system configuration parameters in general as well as in a web augmentation context. Thereupon, we have implemented a wizard in the form of an easy-to-use browser plug-in, allowing the generation of so-called user scripts, which are executed in the browser to engage collaborative filtering functionality from a provided external rest service. We discuss functionality and limitations of the approach, and in a study with end-users we assess the usability and show its suitability for combining recommender systems with web augmentation techniques, aiming to empower end-users to implement controllable recommender applications for a more personalized browsing experience. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/138770 |
url |
http://sedici.unlp.edu.ar/handle/10915/138770 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/1380-7501 info:eu-repo/semantics/altIdentifier/issn/1573-7721 info:eu-repo/semantics/altIdentifier/doi/10.1007/s11042-020-09803-8 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
dc.format.none.fl_str_mv |
application/pdf 6785-6809 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260537703923712 |
score |
13.13397 |