Engaging end-user driven recommender systems : Personalization through web augmentation

Autores
Wischenbart, Martin; Firmenich, Sergio Damián; Rossi, Gustavo Héctor; Bosetti, Gabriela Alejandra; Kapsammer, Elisabeth
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In the past decades recommender systems have become a powerful tool to improve personalization on the Web. Yet, many popular websites lack such functionality, its implementation usually requires certain technical skills, and, above all, its introduction is beyond the scope and control of end-users. To alleviate these problems, this paper presents a novel tool to empower end-users without programming skills, without any involvement of website providers, to embed personalized recommendations of items into arbitrary websites on client-side. For this we have developed a generic meta-model to capture recommender system configuration parameters in general as well as in a web augmentation context. Thereupon, we have implemented a wizard in the form of an easy-to-use browser plug-in, allowing the generation of so-called user scripts, which are executed in the browser to engage collaborative filtering functionality from a provided external rest service. We discuss functionality and limitations of the approach, and in a study with end-users we assess the usability and show its suitability for combining recommender systems with web augmentation techniques, aiming to empower end-users to implement controllable recommender applications for a more personalized browsing experience.
Laboratorio de Investigación y Formación en Informática Avanzada
Materia
Informática
Web augmentation
Visual programming
Client-side personalization
End-user programming
End-user development
Controllability of recommender systems
Browser-side trans-coding
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/138770

id SEDICI_0c71dfe6b656401469ca2e67d5bd2ddd
oai_identifier_str oai:sedici.unlp.edu.ar:10915/138770
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Engaging end-user driven recommender systems : Personalization through web augmentationWischenbart, MartinFirmenich, Sergio DamiánRossi, Gustavo HéctorBosetti, Gabriela AlejandraKapsammer, ElisabethInformáticaWeb augmentationVisual programmingClient-side personalizationEnd-user programmingEnd-user developmentControllability of recommender systemsBrowser-side trans-codingIn the past decades recommender systems have become a powerful tool to improve personalization on the Web. Yet, many popular websites lack such functionality, its implementation usually requires certain technical skills, and, above all, its introduction is beyond the scope and control of end-users. To alleviate these problems, this paper presents a novel tool to empower end-users without programming skills, without any involvement of website providers, to embed personalized recommendations of items into arbitrary websites on client-side. For this we have developed a generic meta-model to capture recommender system configuration parameters in general as well as in a web augmentation context. Thereupon, we have implemented a wizard in the form of an easy-to-use browser plug-in, allowing the generation of so-called user scripts, which are executed in the browser to engage collaborative filtering functionality from a provided external rest service. We discuss functionality and limitations of the approach, and in a study with end-users we assess the usability and show its suitability for combining recommender systems with web augmentation techniques, aiming to empower end-users to implement controllable recommender applications for a more personalized browsing experience.Laboratorio de Investigación y Formación en Informática Avanzada2021info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf6785-6809http://sedici.unlp.edu.ar/handle/10915/138770enginfo:eu-repo/semantics/altIdentifier/issn/1380-7501info:eu-repo/semantics/altIdentifier/issn/1573-7721info:eu-repo/semantics/altIdentifier/doi/10.1007/s11042-020-09803-8info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T11:03:54Zoai:sedici.unlp.edu.ar:10915/138770Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 11:03:54.398SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Engaging end-user driven recommender systems : Personalization through web augmentation
title Engaging end-user driven recommender systems : Personalization through web augmentation
spellingShingle Engaging end-user driven recommender systems : Personalization through web augmentation
Wischenbart, Martin
Informática
Web augmentation
Visual programming
Client-side personalization
End-user programming
End-user development
Controllability of recommender systems
Browser-side trans-coding
title_short Engaging end-user driven recommender systems : Personalization through web augmentation
title_full Engaging end-user driven recommender systems : Personalization through web augmentation
title_fullStr Engaging end-user driven recommender systems : Personalization through web augmentation
title_full_unstemmed Engaging end-user driven recommender systems : Personalization through web augmentation
title_sort Engaging end-user driven recommender systems : Personalization through web augmentation
dc.creator.none.fl_str_mv Wischenbart, Martin
Firmenich, Sergio Damián
Rossi, Gustavo Héctor
Bosetti, Gabriela Alejandra
Kapsammer, Elisabeth
author Wischenbart, Martin
author_facet Wischenbart, Martin
Firmenich, Sergio Damián
Rossi, Gustavo Héctor
Bosetti, Gabriela Alejandra
Kapsammer, Elisabeth
author_role author
author2 Firmenich, Sergio Damián
Rossi, Gustavo Héctor
Bosetti, Gabriela Alejandra
Kapsammer, Elisabeth
author2_role author
author
author
author
dc.subject.none.fl_str_mv Informática
Web augmentation
Visual programming
Client-side personalization
End-user programming
End-user development
Controllability of recommender systems
Browser-side trans-coding
topic Informática
Web augmentation
Visual programming
Client-side personalization
End-user programming
End-user development
Controllability of recommender systems
Browser-side trans-coding
dc.description.none.fl_txt_mv In the past decades recommender systems have become a powerful tool to improve personalization on the Web. Yet, many popular websites lack such functionality, its implementation usually requires certain technical skills, and, above all, its introduction is beyond the scope and control of end-users. To alleviate these problems, this paper presents a novel tool to empower end-users without programming skills, without any involvement of website providers, to embed personalized recommendations of items into arbitrary websites on client-side. For this we have developed a generic meta-model to capture recommender system configuration parameters in general as well as in a web augmentation context. Thereupon, we have implemented a wizard in the form of an easy-to-use browser plug-in, allowing the generation of so-called user scripts, which are executed in the browser to engage collaborative filtering functionality from a provided external rest service. We discuss functionality and limitations of the approach, and in a study with end-users we assess the usability and show its suitability for combining recommender systems with web augmentation techniques, aiming to empower end-users to implement controllable recommender applications for a more personalized browsing experience.
Laboratorio de Investigación y Formación en Informática Avanzada
description In the past decades recommender systems have become a powerful tool to improve personalization on the Web. Yet, many popular websites lack such functionality, its implementation usually requires certain technical skills, and, above all, its introduction is beyond the scope and control of end-users. To alleviate these problems, this paper presents a novel tool to empower end-users without programming skills, without any involvement of website providers, to embed personalized recommendations of items into arbitrary websites on client-side. For this we have developed a generic meta-model to capture recommender system configuration parameters in general as well as in a web augmentation context. Thereupon, we have implemented a wizard in the form of an easy-to-use browser plug-in, allowing the generation of so-called user scripts, which are executed in the browser to engage collaborative filtering functionality from a provided external rest service. We discuss functionality and limitations of the approach, and in a study with end-users we assess the usability and show its suitability for combining recommender systems with web augmentation techniques, aiming to empower end-users to implement controllable recommender applications for a more personalized browsing experience.
publishDate 2021
dc.date.none.fl_str_mv 2021
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/138770
url http://sedici.unlp.edu.ar/handle/10915/138770
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/1380-7501
info:eu-repo/semantics/altIdentifier/issn/1573-7721
info:eu-repo/semantics/altIdentifier/doi/10.1007/s11042-020-09803-8
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
dc.format.none.fl_str_mv application/pdf
6785-6809
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842260537703923712
score 13.13397