Engaging end-user driven recommender systems: personalization through web augmentation
- Autores
- Wischenbart, Martín; Firmenich, Sergio; Rossi, Gustavo Héctor; Bosetti, Gabriela Alejandra; Kapsammer, Elisabeth
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In the past decades recommender systems have become a powerful tool to improve personalization on the Web. Yet, many popular websites lack such functionality, its implementation usually requires certain technical skills, and, above all, its introduction is beyond the scope and control of end-users. To alleviate these problems, this paper presents a novel tool to empower end-users without programming skills, without any involvement of website providers, to embed personalized recommendations of items into arbitrary websites on client-side. For this we have developed a generic meta-model to capture recommender system configuration parameters in general as well as in a web augmentation context. Thereupon, we have implemented a wizard in the form of an easy-to-use browser plugin, allowing the generation of so-called user scripts, which are executed in the browser to engage collaborative filtering functionality from a provided external REST service. We discuss functionality and limitations of the approach, and in a study with end-users we assess the usability and show its suitability for combining recommender systems with web augmentation techniques, aiming to empower end-users to implement controllable recommender applications for a more personalized browsing experience.
- Materia
-
Ciencias de la Computación e Información
Web augmentation
Visual programming
Client-side personalization
End-user programming ·
End-user development
Controllability of recommender systems
Browser-side trans-coding - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/4.0/
- Repositorio
- Institución
- Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
- OAI Identificador
- oai:digital.cic.gba.gob.ar:11746/11345
Ver los metadatos del registro completo
id |
CICBA_0b33a11c159dba411b69b2517e0e8692 |
---|---|
oai_identifier_str |
oai:digital.cic.gba.gob.ar:11746/11345 |
network_acronym_str |
CICBA |
repository_id_str |
9441 |
network_name_str |
CIC Digital (CICBA) |
spelling |
Engaging end-user driven recommender systems: personalization through web augmentationWischenbart, MartínFirmenich, SergioRossi, Gustavo HéctorBosetti, Gabriela AlejandraKapsammer, ElisabethCiencias de la Computación e InformaciónWeb augmentationVisual programmingClient-side personalizationEnd-user programming ·End-user developmentControllability of recommender systemsBrowser-side trans-codingIn the past decades recommender systems have become a powerful tool to improve personalization on the Web. Yet, many popular websites lack such functionality, its implementation usually requires certain technical skills, and, above all, its introduction is beyond the scope and control of end-users. To alleviate these problems, this paper presents a novel tool to empower end-users without programming skills, without any involvement of website providers, to embed personalized recommendations of items into arbitrary websites on client-side. For this we have developed a generic meta-model to capture recommender system configuration parameters in general as well as in a web augmentation context. Thereupon, we have implemented a wizard in the form of an easy-to-use browser plugin, allowing the generation of so-called user scripts, which are executed in the browser to engage collaborative filtering functionality from a provided external REST service. We discuss functionality and limitations of the approach, and in a study with end-users we assess the usability and show its suitability for combining recommender systems with web augmentation techniques, aiming to empower end-users to implement controllable recommender applications for a more personalized browsing experience.2021info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttps://digital.cic.gba.gob.ar/handle/11746/11345enginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s11042-020-09803-8info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/reponame:CIC Digital (CICBA)instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Airesinstacron:CICBA2025-09-04T09:43:55Zoai:digital.cic.gba.gob.ar:11746/11345Institucionalhttp://digital.cic.gba.gob.arOrganismo científico-tecnológicoNo correspondehttp://digital.cic.gba.gob.ar/oai/snrdmarisa.degiusti@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:94412025-09-04 09:43:56.416CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Airesfalse |
dc.title.none.fl_str_mv |
Engaging end-user driven recommender systems: personalization through web augmentation |
title |
Engaging end-user driven recommender systems: personalization through web augmentation |
spellingShingle |
Engaging end-user driven recommender systems: personalization through web augmentation Wischenbart, Martín Ciencias de la Computación e Información Web augmentation Visual programming Client-side personalization End-user programming · End-user development Controllability of recommender systems Browser-side trans-coding |
title_short |
Engaging end-user driven recommender systems: personalization through web augmentation |
title_full |
Engaging end-user driven recommender systems: personalization through web augmentation |
title_fullStr |
Engaging end-user driven recommender systems: personalization through web augmentation |
title_full_unstemmed |
Engaging end-user driven recommender systems: personalization through web augmentation |
title_sort |
Engaging end-user driven recommender systems: personalization through web augmentation |
dc.creator.none.fl_str_mv |
Wischenbart, Martín Firmenich, Sergio Rossi, Gustavo Héctor Bosetti, Gabriela Alejandra Kapsammer, Elisabeth |
author |
Wischenbart, Martín |
author_facet |
Wischenbart, Martín Firmenich, Sergio Rossi, Gustavo Héctor Bosetti, Gabriela Alejandra Kapsammer, Elisabeth |
author_role |
author |
author2 |
Firmenich, Sergio Rossi, Gustavo Héctor Bosetti, Gabriela Alejandra Kapsammer, Elisabeth |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Ciencias de la Computación e Información Web augmentation Visual programming Client-side personalization End-user programming · End-user development Controllability of recommender systems Browser-side trans-coding |
topic |
Ciencias de la Computación e Información Web augmentation Visual programming Client-side personalization End-user programming · End-user development Controllability of recommender systems Browser-side trans-coding |
dc.description.none.fl_txt_mv |
In the past decades recommender systems have become a powerful tool to improve personalization on the Web. Yet, many popular websites lack such functionality, its implementation usually requires certain technical skills, and, above all, its introduction is beyond the scope and control of end-users. To alleviate these problems, this paper presents a novel tool to empower end-users without programming skills, without any involvement of website providers, to embed personalized recommendations of items into arbitrary websites on client-side. For this we have developed a generic meta-model to capture recommender system configuration parameters in general as well as in a web augmentation context. Thereupon, we have implemented a wizard in the form of an easy-to-use browser plugin, allowing the generation of so-called user scripts, which are executed in the browser to engage collaborative filtering functionality from a provided external REST service. We discuss functionality and limitations of the approach, and in a study with end-users we assess the usability and show its suitability for combining recommender systems with web augmentation techniques, aiming to empower end-users to implement controllable recommender applications for a more personalized browsing experience. |
description |
In the past decades recommender systems have become a powerful tool to improve personalization on the Web. Yet, many popular websites lack such functionality, its implementation usually requires certain technical skills, and, above all, its introduction is beyond the scope and control of end-users. To alleviate these problems, this paper presents a novel tool to empower end-users without programming skills, without any involvement of website providers, to embed personalized recommendations of items into arbitrary websites on client-side. For this we have developed a generic meta-model to capture recommender system configuration parameters in general as well as in a web augmentation context. Thereupon, we have implemented a wizard in the form of an easy-to-use browser plugin, allowing the generation of so-called user scripts, which are executed in the browser to engage collaborative filtering functionality from a provided external REST service. We discuss functionality and limitations of the approach, and in a study with end-users we assess the usability and show its suitability for combining recommender systems with web augmentation techniques, aiming to empower end-users to implement controllable recommender applications for a more personalized browsing experience. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://digital.cic.gba.gob.ar/handle/11746/11345 |
url |
https://digital.cic.gba.gob.ar/handle/11746/11345 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s11042-020-09803-8 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:CIC Digital (CICBA) instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Aires instacron:CICBA |
reponame_str |
CIC Digital (CICBA) |
collection |
CIC Digital (CICBA) |
instname_str |
Comisión de Investigaciones Científicas de la Provincia de Buenos Aires |
instacron_str |
CICBA |
institution |
CICBA |
repository.name.fl_str_mv |
CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires |
repository.mail.fl_str_mv |
marisa.degiusti@sedici.unlp.edu.ar |
_version_ |
1842340440601264128 |
score |
12.623145 |