Engaging end-user driven recommender systems: personalization through web augmentation

Autores
Wischenbart, Martín; Firmenich, Sergio; Rossi, Gustavo Héctor; Bosetti, Gabriela Alejandra; Kapsammer, Elisabeth
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In the past decades recommender systems have become a powerful tool to improve personalization on the Web. Yet, many popular websites lack such functionality, its implementation usually requires certain technical skills, and, above all, its introduction is beyond the scope and control of end-users. To alleviate these problems, this paper presents a novel tool to empower end-users without programming skills, without any involvement of website providers, to embed personalized recommendations of items into arbitrary websites on client-side. For this we have developed a generic meta-model to capture recommender system configuration parameters in general as well as in a web augmentation context. Thereupon, we have implemented a wizard in the form of an easy-to-use browser plugin, allowing the generation of so-called user scripts, which are executed in the browser to engage collaborative filtering functionality from a provided external REST service. We discuss functionality and limitations of the approach, and in a study with end-users we assess the usability and show its suitability for combining recommender systems with web augmentation techniques, aiming to empower end-users to implement controllable recommender applications for a more personalized browsing experience.
Materia
Ciencias de la Computación e Información
Web augmentation
Visual programming
Client-side personalization
End-user programming ·
End-user development
Controllability of recommender systems
Browser-side trans-coding
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
CIC Digital (CICBA)
Institución
Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
OAI Identificador
oai:digital.cic.gba.gob.ar:11746/11345

id CICBA_0b33a11c159dba411b69b2517e0e8692
oai_identifier_str oai:digital.cic.gba.gob.ar:11746/11345
network_acronym_str CICBA
repository_id_str 9441
network_name_str CIC Digital (CICBA)
spelling Engaging end-user driven recommender systems: personalization through web augmentationWischenbart, MartínFirmenich, SergioRossi, Gustavo HéctorBosetti, Gabriela AlejandraKapsammer, ElisabethCiencias de la Computación e InformaciónWeb augmentationVisual programmingClient-side personalizationEnd-user programming ·End-user developmentControllability of recommender systemsBrowser-side trans-codingIn the past decades recommender systems have become a powerful tool to improve personalization on the Web. Yet, many popular websites lack such functionality, its implementation usually requires certain technical skills, and, above all, its introduction is beyond the scope and control of end-users. To alleviate these problems, this paper presents a novel tool to empower end-users without programming skills, without any involvement of website providers, to embed personalized recommendations of items into arbitrary websites on client-side. For this we have developed a generic meta-model to capture recommender system configuration parameters in general as well as in a web augmentation context. Thereupon, we have implemented a wizard in the form of an easy-to-use browser plugin, allowing the generation of so-called user scripts, which are executed in the browser to engage collaborative filtering functionality from a provided external REST service. We discuss functionality and limitations of the approach, and in a study with end-users we assess the usability and show its suitability for combining recommender systems with web augmentation techniques, aiming to empower end-users to implement controllable recommender applications for a more personalized browsing experience.2021info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttps://digital.cic.gba.gob.ar/handle/11746/11345enginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s11042-020-09803-8info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/reponame:CIC Digital (CICBA)instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Airesinstacron:CICBA2025-09-04T09:43:55Zoai:digital.cic.gba.gob.ar:11746/11345Institucionalhttp://digital.cic.gba.gob.arOrganismo científico-tecnológicoNo correspondehttp://digital.cic.gba.gob.ar/oai/snrdmarisa.degiusti@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:94412025-09-04 09:43:56.416CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Airesfalse
dc.title.none.fl_str_mv Engaging end-user driven recommender systems: personalization through web augmentation
title Engaging end-user driven recommender systems: personalization through web augmentation
spellingShingle Engaging end-user driven recommender systems: personalization through web augmentation
Wischenbart, Martín
Ciencias de la Computación e Información
Web augmentation
Visual programming
Client-side personalization
End-user programming ·
End-user development
Controllability of recommender systems
Browser-side trans-coding
title_short Engaging end-user driven recommender systems: personalization through web augmentation
title_full Engaging end-user driven recommender systems: personalization through web augmentation
title_fullStr Engaging end-user driven recommender systems: personalization through web augmentation
title_full_unstemmed Engaging end-user driven recommender systems: personalization through web augmentation
title_sort Engaging end-user driven recommender systems: personalization through web augmentation
dc.creator.none.fl_str_mv Wischenbart, Martín
Firmenich, Sergio
Rossi, Gustavo Héctor
Bosetti, Gabriela Alejandra
Kapsammer, Elisabeth
author Wischenbart, Martín
author_facet Wischenbart, Martín
Firmenich, Sergio
Rossi, Gustavo Héctor
Bosetti, Gabriela Alejandra
Kapsammer, Elisabeth
author_role author
author2 Firmenich, Sergio
Rossi, Gustavo Héctor
Bosetti, Gabriela Alejandra
Kapsammer, Elisabeth
author2_role author
author
author
author
dc.subject.none.fl_str_mv Ciencias de la Computación e Información
Web augmentation
Visual programming
Client-side personalization
End-user programming ·
End-user development
Controllability of recommender systems
Browser-side trans-coding
topic Ciencias de la Computación e Información
Web augmentation
Visual programming
Client-side personalization
End-user programming ·
End-user development
Controllability of recommender systems
Browser-side trans-coding
dc.description.none.fl_txt_mv In the past decades recommender systems have become a powerful tool to improve personalization on the Web. Yet, many popular websites lack such functionality, its implementation usually requires certain technical skills, and, above all, its introduction is beyond the scope and control of end-users. To alleviate these problems, this paper presents a novel tool to empower end-users without programming skills, without any involvement of website providers, to embed personalized recommendations of items into arbitrary websites on client-side. For this we have developed a generic meta-model to capture recommender system configuration parameters in general as well as in a web augmentation context. Thereupon, we have implemented a wizard in the form of an easy-to-use browser plugin, allowing the generation of so-called user scripts, which are executed in the browser to engage collaborative filtering functionality from a provided external REST service. We discuss functionality and limitations of the approach, and in a study with end-users we assess the usability and show its suitability for combining recommender systems with web augmentation techniques, aiming to empower end-users to implement controllable recommender applications for a more personalized browsing experience.
description In the past decades recommender systems have become a powerful tool to improve personalization on the Web. Yet, many popular websites lack such functionality, its implementation usually requires certain technical skills, and, above all, its introduction is beyond the scope and control of end-users. To alleviate these problems, this paper presents a novel tool to empower end-users without programming skills, without any involvement of website providers, to embed personalized recommendations of items into arbitrary websites on client-side. For this we have developed a generic meta-model to capture recommender system configuration parameters in general as well as in a web augmentation context. Thereupon, we have implemented a wizard in the form of an easy-to-use browser plugin, allowing the generation of so-called user scripts, which are executed in the browser to engage collaborative filtering functionality from a provided external REST service. We discuss functionality and limitations of the approach, and in a study with end-users we assess the usability and show its suitability for combining recommender systems with web augmentation techniques, aiming to empower end-users to implement controllable recommender applications for a more personalized browsing experience.
publishDate 2021
dc.date.none.fl_str_mv 2021
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://digital.cic.gba.gob.ar/handle/11746/11345
url https://digital.cic.gba.gob.ar/handle/11746/11345
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1007/s11042-020-09803-8
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:CIC Digital (CICBA)
instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
instacron:CICBA
reponame_str CIC Digital (CICBA)
collection CIC Digital (CICBA)
instname_str Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
instacron_str CICBA
institution CICBA
repository.name.fl_str_mv CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
repository.mail.fl_str_mv marisa.degiusti@sedici.unlp.edu.ar
_version_ 1842340440601264128
score 12.623145