Short Term Cloud Nowcasting for a Solar Power Plant based on Irradiance Historical Data
- Autores
- Caballero, Rafael; Zarzalejo, Luis F.; Otero, Álvaro; Piñuel, Luis; Wilbert, Stefan
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This work considers the problem of forecasting the normal solar irradiance with high spatial and temporal resolution (5 minutes). The forecasting is based on a dataset registered during one year from the high resolution radiometric network at a operational solar power plan at Almeria, Spain. In particular, we show a technique for forecasting the irradiance in the next few minutes from the irradiance values obtained on the previous hour. Our proposal employs a type of recurrent neural network known as LSTM, which can learn complex patterns and that has proven its usability for forecasting temporal series. The results show a reasonable improvement with respect to other prediction methods typically employed in the studies of temporal series.
Es este trabajo se aborda el problema de la predicción de radiación global sobre superficie horizontal con alta resolución espacial y temporal (5 minutos) a partir de los datos registrados durante un año en la red radiométrica de alta resolución ubicada en la Plataforma Solar de Almería. En particular se muestra un método capaz de predecir el valor de radiación en los siguientes minutos a partir de los valores de los minutos anteriores. El método emplea el tipo de red neuronal recurrente conocido como LSTM, capaz de aprender patrones complejos y predecir el próximo elemento de una serie temporal. Los resultados muestran una mejora apreciable en con respecto a los métodos de predicción empleados habitualmente en el estudio de series temporales.
Facultad de Informática - Materia
-
Ciencias Informáticas
cloud nowcasting
GHI
LSTM,
supervised machine learning
prendizaje automático supervisado
previsión de nubes - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/71620
Ver los metadatos del registro completo
id |
SEDICI_0af5a978d1e4f48c2deadc4df076d2b8 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/71620 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Short Term Cloud Nowcasting for a Solar Power Plant based on Irradiance Historical DataPredicción de nubes a corto plazo para una planta solar a partir de datos históricosCaballero, RafaelZarzalejo, Luis F.Otero, ÁlvaroPiñuel, LuisWilbert, StefanCiencias Informáticascloud nowcastingGHILSTM,supervised machine learningprendizaje automático supervisadoprevisión de nubesThis work considers the problem of forecasting the normal solar irradiance with high spatial and temporal resolution (5 minutes). The forecasting is based on a dataset registered during one year from the high resolution radiometric network at a operational solar power plan at Almeria, Spain. In particular, we show a technique for forecasting the irradiance in the next few minutes from the irradiance values obtained on the previous hour. Our proposal employs a type of recurrent neural network known as LSTM, which can learn complex patterns and that has proven its usability for forecasting temporal series. The results show a reasonable improvement with respect to other prediction methods typically employed in the studies of temporal series.Es este trabajo se aborda el problema de la predicción de radiación global sobre superficie horizontal con alta resolución espacial y temporal (5 minutos) a partir de los datos registrados durante un año en la red radiométrica de alta resolución ubicada en la Plataforma Solar de Almería. En particular se muestra un método capaz de predecir el valor de radiación en los siguientes minutos a partir de los valores de los minutos anteriores. El método emplea el tipo de red neuronal recurrente conocido como LSTM, capaz de aprender patrones complejos y predecir el próximo elemento de una serie temporal. Los resultados muestran una mejora apreciable en con respecto a los métodos de predicción empleados habitualmente en el estudio de series temporales.Facultad de Informática2018-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf186-192http://sedici.unlp.edu.ar/handle/10915/71620enginfo:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/JCST/article/view/1112info:eu-repo/semantics/altIdentifier/issn/1666-6038info:eu-repo/semantics/altIdentifier/doi/10.24215/16666038.18.e21info:eu-repo/semantics/reference/hdl/10915/69922info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc/4.0/Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:11:39Zoai:sedici.unlp.edu.ar:10915/71620Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:11:39.359SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Short Term Cloud Nowcasting for a Solar Power Plant based on Irradiance Historical Data Predicción de nubes a corto plazo para una planta solar a partir de datos históricos |
title |
Short Term Cloud Nowcasting for a Solar Power Plant based on Irradiance Historical Data |
spellingShingle |
Short Term Cloud Nowcasting for a Solar Power Plant based on Irradiance Historical Data Caballero, Rafael Ciencias Informáticas cloud nowcasting GHI LSTM, supervised machine learning prendizaje automático supervisado previsión de nubes |
title_short |
Short Term Cloud Nowcasting for a Solar Power Plant based on Irradiance Historical Data |
title_full |
Short Term Cloud Nowcasting for a Solar Power Plant based on Irradiance Historical Data |
title_fullStr |
Short Term Cloud Nowcasting for a Solar Power Plant based on Irradiance Historical Data |
title_full_unstemmed |
Short Term Cloud Nowcasting for a Solar Power Plant based on Irradiance Historical Data |
title_sort |
Short Term Cloud Nowcasting for a Solar Power Plant based on Irradiance Historical Data |
dc.creator.none.fl_str_mv |
Caballero, Rafael Zarzalejo, Luis F. Otero, Álvaro Piñuel, Luis Wilbert, Stefan |
author |
Caballero, Rafael |
author_facet |
Caballero, Rafael Zarzalejo, Luis F. Otero, Álvaro Piñuel, Luis Wilbert, Stefan |
author_role |
author |
author2 |
Zarzalejo, Luis F. Otero, Álvaro Piñuel, Luis Wilbert, Stefan |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas cloud nowcasting GHI LSTM, supervised machine learning prendizaje automático supervisado previsión de nubes |
topic |
Ciencias Informáticas cloud nowcasting GHI LSTM, supervised machine learning prendizaje automático supervisado previsión de nubes |
dc.description.none.fl_txt_mv |
This work considers the problem of forecasting the normal solar irradiance with high spatial and temporal resolution (5 minutes). The forecasting is based on a dataset registered during one year from the high resolution radiometric network at a operational solar power plan at Almeria, Spain. In particular, we show a technique for forecasting the irradiance in the next few minutes from the irradiance values obtained on the previous hour. Our proposal employs a type of recurrent neural network known as LSTM, which can learn complex patterns and that has proven its usability for forecasting temporal series. The results show a reasonable improvement with respect to other prediction methods typically employed in the studies of temporal series. Es este trabajo se aborda el problema de la predicción de radiación global sobre superficie horizontal con alta resolución espacial y temporal (5 minutos) a partir de los datos registrados durante un año en la red radiométrica de alta resolución ubicada en la Plataforma Solar de Almería. En particular se muestra un método capaz de predecir el valor de radiación en los siguientes minutos a partir de los valores de los minutos anteriores. El método emplea el tipo de red neuronal recurrente conocido como LSTM, capaz de aprender patrones complejos y predecir el próximo elemento de una serie temporal. Los resultados muestran una mejora apreciable en con respecto a los métodos de predicción empleados habitualmente en el estudio de series temporales. Facultad de Informática |
description |
This work considers the problem of forecasting the normal solar irradiance with high spatial and temporal resolution (5 minutes). The forecasting is based on a dataset registered during one year from the high resolution radiometric network at a operational solar power plan at Almeria, Spain. In particular, we show a technique for forecasting the irradiance in the next few minutes from the irradiance values obtained on the previous hour. Our proposal employs a type of recurrent neural network known as LSTM, which can learn complex patterns and that has proven its usability for forecasting temporal series. The results show a reasonable improvement with respect to other prediction methods typically employed in the studies of temporal series. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/71620 |
url |
http://sedici.unlp.edu.ar/handle/10915/71620 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/JCST/article/view/1112 info:eu-repo/semantics/altIdentifier/issn/1666-6038 info:eu-repo/semantics/altIdentifier/doi/10.24215/16666038.18.e21 info:eu-repo/semantics/reference/hdl/10915/69922 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc/4.0/ Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) |
dc.format.none.fl_str_mv |
application/pdf 186-192 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844615986222727168 |
score |
13.070432 |