Short Term Cloud Nowcasting for a Solar Power Plant based on Irradiance Historical Data

Autores
Caballero, Rafael; Zarzalejo, Luis F.; Otero, Álvaro; Piñuel, Luis; Wilbert, Stefan
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
This work considers the problem of forecasting the normal solar irradiance with high spatial and temporal resolution (5 minutes). The forecasting is based on a dataset registered during one year from the high resolution radiometric network at a operational solar power plan at Almeria, Spain. In particular, we show a technique for forecasting the irradiance in the next few minutes from the irradiance values obtained on the previous hour. Our proposal employs a type of recurrent neural network known as LSTM, which can learn complex patterns and that has proven its usability for forecasting temporal series. The results show a reasonable improvement with respect to other prediction methods typically employed in the studies of temporal series.
Es este trabajo se aborda el problema de la predicción de radiación global sobre superficie horizontal con alta resolución espacial y temporal (5 minutos) a partir de los datos registrados durante un año en la red radiométrica de alta resolución ubicada en la Plataforma Solar de Almería. En particular se muestra un método capaz de predecir el valor de radiación en los siguientes minutos a partir de los valores de los minutos anteriores. El método emplea el tipo de red neuronal recurrente conocido como LSTM, capaz de aprender patrones complejos y predecir el próximo elemento de una serie temporal. Los resultados muestran una mejora apreciable en con respecto a los métodos de predicción empleados habitualmente en el estudio de series temporales.
Facultad de Informática
Materia
Ciencias Informáticas
cloud nowcasting
GHI
LSTM,
supervised machine learning
prendizaje automático supervisado
previsión de nubes
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/71620

id SEDICI_0af5a978d1e4f48c2deadc4df076d2b8
oai_identifier_str oai:sedici.unlp.edu.ar:10915/71620
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Short Term Cloud Nowcasting for a Solar Power Plant based on Irradiance Historical DataPredicción de nubes a corto plazo para una planta solar a partir de datos históricosCaballero, RafaelZarzalejo, Luis F.Otero, ÁlvaroPiñuel, LuisWilbert, StefanCiencias Informáticascloud nowcastingGHILSTM,supervised machine learningprendizaje automático supervisadoprevisión de nubesThis work considers the problem of forecasting the normal solar irradiance with high spatial and temporal resolution (5 minutes). The forecasting is based on a dataset registered during one year from the high resolution radiometric network at a operational solar power plan at Almeria, Spain. In particular, we show a technique for forecasting the irradiance in the next few minutes from the irradiance values obtained on the previous hour. Our proposal employs a type of recurrent neural network known as LSTM, which can learn complex patterns and that has proven its usability for forecasting temporal series. The results show a reasonable improvement with respect to other prediction methods typically employed in the studies of temporal series.Es este trabajo se aborda el problema de la predicción de radiación global sobre superficie horizontal con alta resolución espacial y temporal (5 minutos) a partir de los datos registrados durante un año en la red radiométrica de alta resolución ubicada en la Plataforma Solar de Almería. En particular se muestra un método capaz de predecir el valor de radiación en los siguientes minutos a partir de los valores de los minutos anteriores. El método emplea el tipo de red neuronal recurrente conocido como LSTM, capaz de aprender patrones complejos y predecir el próximo elemento de una serie temporal. Los resultados muestran una mejora apreciable en con respecto a los métodos de predicción empleados habitualmente en el estudio de series temporales.Facultad de Informática2018-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf186-192http://sedici.unlp.edu.ar/handle/10915/71620enginfo:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/JCST/article/view/1112info:eu-repo/semantics/altIdentifier/issn/1666-6038info:eu-repo/semantics/altIdentifier/doi/10.24215/16666038.18.e21info:eu-repo/semantics/reference/hdl/10915/69922info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc/4.0/Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:11:39Zoai:sedici.unlp.edu.ar:10915/71620Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:11:39.359SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Short Term Cloud Nowcasting for a Solar Power Plant based on Irradiance Historical Data
Predicción de nubes a corto plazo para una planta solar a partir de datos históricos
title Short Term Cloud Nowcasting for a Solar Power Plant based on Irradiance Historical Data
spellingShingle Short Term Cloud Nowcasting for a Solar Power Plant based on Irradiance Historical Data
Caballero, Rafael
Ciencias Informáticas
cloud nowcasting
GHI
LSTM,
supervised machine learning
prendizaje automático supervisado
previsión de nubes
title_short Short Term Cloud Nowcasting for a Solar Power Plant based on Irradiance Historical Data
title_full Short Term Cloud Nowcasting for a Solar Power Plant based on Irradiance Historical Data
title_fullStr Short Term Cloud Nowcasting for a Solar Power Plant based on Irradiance Historical Data
title_full_unstemmed Short Term Cloud Nowcasting for a Solar Power Plant based on Irradiance Historical Data
title_sort Short Term Cloud Nowcasting for a Solar Power Plant based on Irradiance Historical Data
dc.creator.none.fl_str_mv Caballero, Rafael
Zarzalejo, Luis F.
Otero, Álvaro
Piñuel, Luis
Wilbert, Stefan
author Caballero, Rafael
author_facet Caballero, Rafael
Zarzalejo, Luis F.
Otero, Álvaro
Piñuel, Luis
Wilbert, Stefan
author_role author
author2 Zarzalejo, Luis F.
Otero, Álvaro
Piñuel, Luis
Wilbert, Stefan
author2_role author
author
author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
cloud nowcasting
GHI
LSTM,
supervised machine learning
prendizaje automático supervisado
previsión de nubes
topic Ciencias Informáticas
cloud nowcasting
GHI
LSTM,
supervised machine learning
prendizaje automático supervisado
previsión de nubes
dc.description.none.fl_txt_mv This work considers the problem of forecasting the normal solar irradiance with high spatial and temporal resolution (5 minutes). The forecasting is based on a dataset registered during one year from the high resolution radiometric network at a operational solar power plan at Almeria, Spain. In particular, we show a technique for forecasting the irradiance in the next few minutes from the irradiance values obtained on the previous hour. Our proposal employs a type of recurrent neural network known as LSTM, which can learn complex patterns and that has proven its usability for forecasting temporal series. The results show a reasonable improvement with respect to other prediction methods typically employed in the studies of temporal series.
Es este trabajo se aborda el problema de la predicción de radiación global sobre superficie horizontal con alta resolución espacial y temporal (5 minutos) a partir de los datos registrados durante un año en la red radiométrica de alta resolución ubicada en la Plataforma Solar de Almería. En particular se muestra un método capaz de predecir el valor de radiación en los siguientes minutos a partir de los valores de los minutos anteriores. El método emplea el tipo de red neuronal recurrente conocido como LSTM, capaz de aprender patrones complejos y predecir el próximo elemento de una serie temporal. Los resultados muestran una mejora apreciable en con respecto a los métodos de predicción empleados habitualmente en el estudio de series temporales.
Facultad de Informática
description This work considers the problem of forecasting the normal solar irradiance with high spatial and temporal resolution (5 minutes). The forecasting is based on a dataset registered during one year from the high resolution radiometric network at a operational solar power plan at Almeria, Spain. In particular, we show a technique for forecasting the irradiance in the next few minutes from the irradiance values obtained on the previous hour. Our proposal employs a type of recurrent neural network known as LSTM, which can learn complex patterns and that has proven its usability for forecasting temporal series. The results show a reasonable improvement with respect to other prediction methods typically employed in the studies of temporal series.
publishDate 2018
dc.date.none.fl_str_mv 2018-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/71620
url http://sedici.unlp.edu.ar/handle/10915/71620
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/JCST/article/view/1112
info:eu-repo/semantics/altIdentifier/issn/1666-6038
info:eu-repo/semantics/altIdentifier/doi/10.24215/16666038.18.e21
info:eu-repo/semantics/reference/hdl/10915/69922
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc/4.0/
Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc/4.0/
Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
dc.format.none.fl_str_mv application/pdf
186-192
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844615986222727168
score 13.070432