Entropic Analysis of the Quantum Oscillator with a Minimal Length

Autores
Puertas Centeno, D.; Portesi, Mariela Adelina
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The well-known Heisenberg–Robertson uncertainty relation for a pair of noncommuting observables, is expressed in terms of the product of variances and the commutator among the operators, computed for the quantum state of a system. Different modified commutation relations have been considered in the last years with the purpose of taking into account the effect of quantum gravity. Indeed it can be seen that letting [X,P] = iℏ (1 + βP2) implies the existence of a minimal length proportional to β . The Bialynicki-Birula–Mycielski entropic uncertainty relation in terms of Shannon entropies is also seen to be deformed in the presence of a minimal length, corresponding to a strictly positive deformation parameter β . Generalized entropies can be implemented. Indeed, results for the sum of position and (auxiliary) momentum Renyi entropies with conjugated indices have been provided recently for the ground and first excited state. We present numerical findings for conjugated pairs of entropic indices, for the lowest lying levels of the deformed harmonic oscillator system in 1D, taking into account the position distribution for the wavefunction and the actual momentum.
Instituto de Física La Plata
Materia
Ciencias Exactas
Física
Uncertainty relations
Information entropy
Quantum gravity
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/124032

id SEDICI_0a6f903f8100e711258d3d62fb346cb1
oai_identifier_str oai:sedici.unlp.edu.ar:10915/124032
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Entropic Analysis of the Quantum Oscillator with a Minimal LengthPuertas Centeno, D.Portesi, Mariela AdelinaCiencias ExactasFísicaUncertainty relationsInformation entropyQuantum gravityThe well-known Heisenberg–Robertson uncertainty relation for a pair of noncommuting observables, is expressed in terms of the product of variances and the commutator among the operators, computed for the quantum state of a system. Different modified commutation relations have been considered in the last years with the purpose of taking into account the effect of quantum gravity. Indeed it can be seen that letting [X,P] = iℏ (1 + βP<sup>2</sup>) implies the existence of a minimal length proportional to β . The Bialynicki-Birula–Mycielski entropic uncertainty relation in terms of Shannon entropies is also seen to be deformed in the presence of a minimal length, corresponding to a strictly positive deformation parameter β . Generalized entropies can be implemented. Indeed, results for the sum of position and (auxiliary) momentum Renyi entropies with conjugated indices have been provided recently for the ground and first excited state. We present numerical findings for conjugated pairs of entropic indices, for the lowest lying levels of the deformed harmonic oscillator system in 1D, taking into account the position distribution for the wavefunction and the actual momentum.Instituto de Física La Plata2019-11-19info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/124032enginfo:eu-repo/semantics/altIdentifier/issn/2504-3900info:eu-repo/semantics/altIdentifier/arxiv/1909.10515info:eu-repo/semantics/altIdentifier/doi/10.3390/proceedings2019012057info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T11:21:23Zoai:sedici.unlp.edu.ar:10915/124032Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 11:21:23.458SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Entropic Analysis of the Quantum Oscillator with a Minimal Length
title Entropic Analysis of the Quantum Oscillator with a Minimal Length
spellingShingle Entropic Analysis of the Quantum Oscillator with a Minimal Length
Puertas Centeno, D.
Ciencias Exactas
Física
Uncertainty relations
Information entropy
Quantum gravity
title_short Entropic Analysis of the Quantum Oscillator with a Minimal Length
title_full Entropic Analysis of the Quantum Oscillator with a Minimal Length
title_fullStr Entropic Analysis of the Quantum Oscillator with a Minimal Length
title_full_unstemmed Entropic Analysis of the Quantum Oscillator with a Minimal Length
title_sort Entropic Analysis of the Quantum Oscillator with a Minimal Length
dc.creator.none.fl_str_mv Puertas Centeno, D.
Portesi, Mariela Adelina
author Puertas Centeno, D.
author_facet Puertas Centeno, D.
Portesi, Mariela Adelina
author_role author
author2 Portesi, Mariela Adelina
author2_role author
dc.subject.none.fl_str_mv Ciencias Exactas
Física
Uncertainty relations
Information entropy
Quantum gravity
topic Ciencias Exactas
Física
Uncertainty relations
Information entropy
Quantum gravity
dc.description.none.fl_txt_mv The well-known Heisenberg–Robertson uncertainty relation for a pair of noncommuting observables, is expressed in terms of the product of variances and the commutator among the operators, computed for the quantum state of a system. Different modified commutation relations have been considered in the last years with the purpose of taking into account the effect of quantum gravity. Indeed it can be seen that letting [X,P] = iℏ (1 + βP<sup>2</sup>) implies the existence of a minimal length proportional to β . The Bialynicki-Birula–Mycielski entropic uncertainty relation in terms of Shannon entropies is also seen to be deformed in the presence of a minimal length, corresponding to a strictly positive deformation parameter β . Generalized entropies can be implemented. Indeed, results for the sum of position and (auxiliary) momentum Renyi entropies with conjugated indices have been provided recently for the ground and first excited state. We present numerical findings for conjugated pairs of entropic indices, for the lowest lying levels of the deformed harmonic oscillator system in 1D, taking into account the position distribution for the wavefunction and the actual momentum.
Instituto de Física La Plata
description The well-known Heisenberg–Robertson uncertainty relation for a pair of noncommuting observables, is expressed in terms of the product of variances and the commutator among the operators, computed for the quantum state of a system. Different modified commutation relations have been considered in the last years with the purpose of taking into account the effect of quantum gravity. Indeed it can be seen that letting [X,P] = iℏ (1 + βP<sup>2</sup>) implies the existence of a minimal length proportional to β . The Bialynicki-Birula–Mycielski entropic uncertainty relation in terms of Shannon entropies is also seen to be deformed in the presence of a minimal length, corresponding to a strictly positive deformation parameter β . Generalized entropies can be implemented. Indeed, results for the sum of position and (auxiliary) momentum Renyi entropies with conjugated indices have been provided recently for the ground and first excited state. We present numerical findings for conjugated pairs of entropic indices, for the lowest lying levels of the deformed harmonic oscillator system in 1D, taking into account the position distribution for the wavefunction and the actual momentum.
publishDate 2019
dc.date.none.fl_str_mv 2019-11-19
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/124032
url http://sedici.unlp.edu.ar/handle/10915/124032
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/2504-3900
info:eu-repo/semantics/altIdentifier/arxiv/1909.10515
info:eu-repo/semantics/altIdentifier/doi/10.3390/proceedings2019012057
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846064270735835136
score 13.22299