Entropic Analysis of the Quantum Oscillator with a Minimal Length
- Autores
- Puertas Centeno, D.; Portesi, Mariela Adelina
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The well-known Heisenberg–Robertson uncertainty relation for a pair of noncommuting observables, is expressed in terms of the product of variances and the commutator among the operators, computed for the quantum state of a system. Different modified commutation relations have been considered in the last years with the purpose of taking into account the effect of quantum gravity. Indeed it can be seen that letting [X,P] = iℏ (1 + βP2) implies the existence of a minimal length proportional to β . The Bialynicki-Birula–Mycielski entropic uncertainty relation in terms of Shannon entropies is also seen to be deformed in the presence of a minimal length, corresponding to a strictly positive deformation parameter β . Generalized entropies can be implemented. Indeed, results for the sum of position and (auxiliary) momentum Renyi entropies with conjugated indices have been provided recently for the ground and first excited state. We present numerical findings for conjugated pairs of entropic indices, for the lowest lying levels of the deformed harmonic oscillator system in 1D, taking into account the position distribution for the wavefunction and the actual momentum.
Instituto de Física La Plata - Materia
-
Ciencias Exactas
Física
Uncertainty relations
Information entropy
Quantum gravity - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/124032
Ver los metadatos del registro completo
id |
SEDICI_0a6f903f8100e711258d3d62fb346cb1 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/124032 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Entropic Analysis of the Quantum Oscillator with a Minimal LengthPuertas Centeno, D.Portesi, Mariela AdelinaCiencias ExactasFísicaUncertainty relationsInformation entropyQuantum gravityThe well-known Heisenberg–Robertson uncertainty relation for a pair of noncommuting observables, is expressed in terms of the product of variances and the commutator among the operators, computed for the quantum state of a system. Different modified commutation relations have been considered in the last years with the purpose of taking into account the effect of quantum gravity. Indeed it can be seen that letting [X,P] = iℏ (1 + βP<sup>2</sup>) implies the existence of a minimal length proportional to β . The Bialynicki-Birula–Mycielski entropic uncertainty relation in terms of Shannon entropies is also seen to be deformed in the presence of a minimal length, corresponding to a strictly positive deformation parameter β . Generalized entropies can be implemented. Indeed, results for the sum of position and (auxiliary) momentum Renyi entropies with conjugated indices have been provided recently for the ground and first excited state. We present numerical findings for conjugated pairs of entropic indices, for the lowest lying levels of the deformed harmonic oscillator system in 1D, taking into account the position distribution for the wavefunction and the actual momentum.Instituto de Física La Plata2019-11-19info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/124032enginfo:eu-repo/semantics/altIdentifier/issn/2504-3900info:eu-repo/semantics/altIdentifier/arxiv/1909.10515info:eu-repo/semantics/altIdentifier/doi/10.3390/proceedings2019012057info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T11:21:23Zoai:sedici.unlp.edu.ar:10915/124032Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 11:21:23.458SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Entropic Analysis of the Quantum Oscillator with a Minimal Length |
title |
Entropic Analysis of the Quantum Oscillator with a Minimal Length |
spellingShingle |
Entropic Analysis of the Quantum Oscillator with a Minimal Length Puertas Centeno, D. Ciencias Exactas Física Uncertainty relations Information entropy Quantum gravity |
title_short |
Entropic Analysis of the Quantum Oscillator with a Minimal Length |
title_full |
Entropic Analysis of the Quantum Oscillator with a Minimal Length |
title_fullStr |
Entropic Analysis of the Quantum Oscillator with a Minimal Length |
title_full_unstemmed |
Entropic Analysis of the Quantum Oscillator with a Minimal Length |
title_sort |
Entropic Analysis of the Quantum Oscillator with a Minimal Length |
dc.creator.none.fl_str_mv |
Puertas Centeno, D. Portesi, Mariela Adelina |
author |
Puertas Centeno, D. |
author_facet |
Puertas Centeno, D. Portesi, Mariela Adelina |
author_role |
author |
author2 |
Portesi, Mariela Adelina |
author2_role |
author |
dc.subject.none.fl_str_mv |
Ciencias Exactas Física Uncertainty relations Information entropy Quantum gravity |
topic |
Ciencias Exactas Física Uncertainty relations Information entropy Quantum gravity |
dc.description.none.fl_txt_mv |
The well-known Heisenberg–Robertson uncertainty relation for a pair of noncommuting observables, is expressed in terms of the product of variances and the commutator among the operators, computed for the quantum state of a system. Different modified commutation relations have been considered in the last years with the purpose of taking into account the effect of quantum gravity. Indeed it can be seen that letting [X,P] = iℏ (1 + βP<sup>2</sup>) implies the existence of a minimal length proportional to β . The Bialynicki-Birula–Mycielski entropic uncertainty relation in terms of Shannon entropies is also seen to be deformed in the presence of a minimal length, corresponding to a strictly positive deformation parameter β . Generalized entropies can be implemented. Indeed, results for the sum of position and (auxiliary) momentum Renyi entropies with conjugated indices have been provided recently for the ground and first excited state. We present numerical findings for conjugated pairs of entropic indices, for the lowest lying levels of the deformed harmonic oscillator system in 1D, taking into account the position distribution for the wavefunction and the actual momentum. Instituto de Física La Plata |
description |
The well-known Heisenberg–Robertson uncertainty relation for a pair of noncommuting observables, is expressed in terms of the product of variances and the commutator among the operators, computed for the quantum state of a system. Different modified commutation relations have been considered in the last years with the purpose of taking into account the effect of quantum gravity. Indeed it can be seen that letting [X,P] = iℏ (1 + βP<sup>2</sup>) implies the existence of a minimal length proportional to β . The Bialynicki-Birula–Mycielski entropic uncertainty relation in terms of Shannon entropies is also seen to be deformed in the presence of a minimal length, corresponding to a strictly positive deformation parameter β . Generalized entropies can be implemented. Indeed, results for the sum of position and (auxiliary) momentum Renyi entropies with conjugated indices have been provided recently for the ground and first excited state. We present numerical findings for conjugated pairs of entropic indices, for the lowest lying levels of the deformed harmonic oscillator system in 1D, taking into account the position distribution for the wavefunction and the actual momentum. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-11-19 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/124032 |
url |
http://sedici.unlp.edu.ar/handle/10915/124032 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/2504-3900 info:eu-repo/semantics/altIdentifier/arxiv/1909.10515 info:eu-repo/semantics/altIdentifier/doi/10.3390/proceedings2019012057 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1846064270735835136 |
score |
13.22299 |