Entropic Analysis of the Quantum Oscillator with a Minimal Length
- Autores
- Puertas Centeno, David; Portesi, Mariela Adelina
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The well-known Heisenberg-Robertson uncertainty relation for a pair of noncommuting observables, is expressed in terms of the product of variances and the commutator among the operators, computed for the quantum state of a system. Different modified commutation relations have been considered in the last years with the purpose of taking into account the effect of quantum gravity. Indeed it can be seen that letting [X,P]=iℏ(1+β P^2) implies the existence of a minimal length proportional to sqrt(β). The Bialynicki-Birula-Mycielski entropic uncertainty relation in terms of Shannon entropies is also seen to be deformed in the presence of a minimal length, corresponding to a strictly positive deformation parameter β. Generalized entropies can be implemented. Indeed, results for the sum of position and (auxiliary) momentum Rényi entropies with conjugated indices have been provided recently for the ground and first excited state. We present numerical findings for conjugated pairs of entropic indices, for the lowest lying levels of the deformed harmonic oscillator system in 1D, taking into account the position distribution for the wavefunction and the actual momentum.
Fil: Puertas Centeno, David. Universidad Rey Juan Carlos; España
Fil: Portesi, Mariela Adelina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina - Materia
-
UNCERTAINTY RELATIONS
INFORMATION ENTROPY
QUANTUM GRAVITY - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/128839
Ver los metadatos del registro completo
id |
CONICETDig_8066f25eefe9ce1c6ca7c986fee5bb5f |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/128839 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Entropic Analysis of the Quantum Oscillator with a Minimal LengthPuertas Centeno, DavidPortesi, Mariela AdelinaUNCERTAINTY RELATIONSINFORMATION ENTROPYQUANTUM GRAVITYhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The well-known Heisenberg-Robertson uncertainty relation for a pair of noncommuting observables, is expressed in terms of the product of variances and the commutator among the operators, computed for the quantum state of a system. Different modified commutation relations have been considered in the last years with the purpose of taking into account the effect of quantum gravity. Indeed it can be seen that letting [X,P]=iℏ(1+β P^2) implies the existence of a minimal length proportional to sqrt(β). The Bialynicki-Birula-Mycielski entropic uncertainty relation in terms of Shannon entropies is also seen to be deformed in the presence of a minimal length, corresponding to a strictly positive deformation parameter β. Generalized entropies can be implemented. Indeed, results for the sum of position and (auxiliary) momentum Rényi entropies with conjugated indices have been provided recently for the ground and first excited state. We present numerical findings for conjugated pairs of entropic indices, for the lowest lying levels of the deformed harmonic oscillator system in 1D, taking into account the position distribution for the wavefunction and the actual momentum.Fil: Puertas Centeno, David. Universidad Rey Juan Carlos; EspañaFil: Portesi, Mariela Adelina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaMultidisciplinary Digital Publishing Institute2019-11-19info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/128839Puertas Centeno, David; Portesi, Mariela Adelina; Entropic Analysis of the Quantum Oscillator with a Minimal Length; Multidisciplinary Digital Publishing Institute; Proceedings; 12; 1; 19-11-2019; 1-42504-3900CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2504-3900/12/1/57info:eu-repo/semantics/altIdentifier/doi/10.3390/proceedings2019012057info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:16:52Zoai:ri.conicet.gov.ar:11336/128839instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:16:52.409CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Entropic Analysis of the Quantum Oscillator with a Minimal Length |
title |
Entropic Analysis of the Quantum Oscillator with a Minimal Length |
spellingShingle |
Entropic Analysis of the Quantum Oscillator with a Minimal Length Puertas Centeno, David UNCERTAINTY RELATIONS INFORMATION ENTROPY QUANTUM GRAVITY |
title_short |
Entropic Analysis of the Quantum Oscillator with a Minimal Length |
title_full |
Entropic Analysis of the Quantum Oscillator with a Minimal Length |
title_fullStr |
Entropic Analysis of the Quantum Oscillator with a Minimal Length |
title_full_unstemmed |
Entropic Analysis of the Quantum Oscillator with a Minimal Length |
title_sort |
Entropic Analysis of the Quantum Oscillator with a Minimal Length |
dc.creator.none.fl_str_mv |
Puertas Centeno, David Portesi, Mariela Adelina |
author |
Puertas Centeno, David |
author_facet |
Puertas Centeno, David Portesi, Mariela Adelina |
author_role |
author |
author2 |
Portesi, Mariela Adelina |
author2_role |
author |
dc.subject.none.fl_str_mv |
UNCERTAINTY RELATIONS INFORMATION ENTROPY QUANTUM GRAVITY |
topic |
UNCERTAINTY RELATIONS INFORMATION ENTROPY QUANTUM GRAVITY |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The well-known Heisenberg-Robertson uncertainty relation for a pair of noncommuting observables, is expressed in terms of the product of variances and the commutator among the operators, computed for the quantum state of a system. Different modified commutation relations have been considered in the last years with the purpose of taking into account the effect of quantum gravity. Indeed it can be seen that letting [X,P]=iℏ(1+β P^2) implies the existence of a minimal length proportional to sqrt(β). The Bialynicki-Birula-Mycielski entropic uncertainty relation in terms of Shannon entropies is also seen to be deformed in the presence of a minimal length, corresponding to a strictly positive deformation parameter β. Generalized entropies can be implemented. Indeed, results for the sum of position and (auxiliary) momentum Rényi entropies with conjugated indices have been provided recently for the ground and first excited state. We present numerical findings for conjugated pairs of entropic indices, for the lowest lying levels of the deformed harmonic oscillator system in 1D, taking into account the position distribution for the wavefunction and the actual momentum. Fil: Puertas Centeno, David. Universidad Rey Juan Carlos; España Fil: Portesi, Mariela Adelina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina |
description |
The well-known Heisenberg-Robertson uncertainty relation for a pair of noncommuting observables, is expressed in terms of the product of variances and the commutator among the operators, computed for the quantum state of a system. Different modified commutation relations have been considered in the last years with the purpose of taking into account the effect of quantum gravity. Indeed it can be seen that letting [X,P]=iℏ(1+β P^2) implies the existence of a minimal length proportional to sqrt(β). The Bialynicki-Birula-Mycielski entropic uncertainty relation in terms of Shannon entropies is also seen to be deformed in the presence of a minimal length, corresponding to a strictly positive deformation parameter β. Generalized entropies can be implemented. Indeed, results for the sum of position and (auxiliary) momentum Rényi entropies with conjugated indices have been provided recently for the ground and first excited state. We present numerical findings for conjugated pairs of entropic indices, for the lowest lying levels of the deformed harmonic oscillator system in 1D, taking into account the position distribution for the wavefunction and the actual momentum. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-11-19 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/128839 Puertas Centeno, David; Portesi, Mariela Adelina; Entropic Analysis of the Quantum Oscillator with a Minimal Length; Multidisciplinary Digital Publishing Institute; Proceedings; 12; 1; 19-11-2019; 1-4 2504-3900 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/128839 |
identifier_str_mv |
Puertas Centeno, David; Portesi, Mariela Adelina; Entropic Analysis of the Quantum Oscillator with a Minimal Length; Multidisciplinary Digital Publishing Institute; Proceedings; 12; 1; 19-11-2019; 1-4 2504-3900 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2504-3900/12/1/57 info:eu-repo/semantics/altIdentifier/doi/10.3390/proceedings2019012057 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute |
publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980921031000064 |
score |
12.993085 |