Detección de daños con visión artificial en inspecciones marítimas: un mapeo sistemático de la literatura

Autores
Flores, Hugo Daniel; Neil, Carlos Gerardo
Año de publicación
2023
Idioma
español castellano
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
Un alto porcentaje de vehículos son transportados vía marítima, donde son manipulados según protocolos específicos. Controlar su estado y detectar posibles daños recae en personal capacitado, lo que genera dificultades al momento de imputar responsabilidades por daños. Para mejorar la eficiencia de estos procesos, la visión artificial se ha consolidado como una alternativa viable para detectar y clasificar daños en distintas industrias. El objetivo de este trabajo es analizar el uso de algoritmos de inteligencia artificial para detectar y clasificar daños en la industria marítima. Se describe detalladamente la creación y ejecución de un protocolo que establece un conjunto de preguntas, así como el procedimiento para realizar la búsqueda bibliográfica y aplicar filtros para identificar los artículos relevantes. Luego, se realiza un análisis profundo para responder a las preguntas planteadas en el protocolo. Se ha demostrado que las técnicas de visión artificial basadas en Redes Neuronales Convolucionales (RNC) son altamente efectivas para implementar soluciones destinadas a la detección y clasificación de daños en esta industria. No se han identificado desarrollos tecnológicos que usen RNC para detectar y clasificar daños en transporte marítimo automotriz, por lo tanto, es viable explorar alternativas que incluyan técnicas de visión artificial para resolver los problemas planteados en la industria naviera.
Red de Universidades con Carreras en Informática
Materia
Ciencias Informáticas
Daños
Redes Neuronales
Visión Artificial
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/164809

id SEDICI_0a098a09a3416ab1964ea780d2609862
oai_identifier_str oai:sedici.unlp.edu.ar:10915/164809
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Detección de daños con visión artificial en inspecciones marítimas: un mapeo sistemático de la literaturaFlores, Hugo DanielNeil, Carlos GerardoCiencias InformáticasDañosRedes NeuronalesVisión ArtificialUn alto porcentaje de vehículos son transportados vía marítima, donde son manipulados según protocolos específicos. Controlar su estado y detectar posibles daños recae en personal capacitado, lo que genera dificultades al momento de imputar responsabilidades por daños. Para mejorar la eficiencia de estos procesos, la visión artificial se ha consolidado como una alternativa viable para detectar y clasificar daños en distintas industrias. El objetivo de este trabajo es analizar el uso de algoritmos de inteligencia artificial para detectar y clasificar daños en la industria marítima. Se describe detalladamente la creación y ejecución de un protocolo que establece un conjunto de preguntas, así como el procedimiento para realizar la búsqueda bibliográfica y aplicar filtros para identificar los artículos relevantes. Luego, se realiza un análisis profundo para responder a las preguntas planteadas en el protocolo. Se ha demostrado que las técnicas de visión artificial basadas en Redes Neuronales Convolucionales (RNC) son altamente efectivas para implementar soluciones destinadas a la detección y clasificación de daños en esta industria. No se han identificado desarrollos tecnológicos que usen RNC para detectar y clasificar daños en transporte marítimo automotriz, por lo tanto, es viable explorar alternativas que incluyan técnicas de visión artificial para resolver los problemas planteados en la industria naviera.Red de Universidades con Carreras en Informática2023-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf170-180http://sedici.unlp.edu.ar/handle/10915/164809spainfo:eu-repo/semantics/altIdentifier/isbn/978-987-9285-51-0info:eu-repo/semantics/reference/url/https://sedici.unlp.edu.ar/handle/10915/163107info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T11:13:29Zoai:sedici.unlp.edu.ar:10915/164809Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 11:13:29.318SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Detección de daños con visión artificial en inspecciones marítimas: un mapeo sistemático de la literatura
title Detección de daños con visión artificial en inspecciones marítimas: un mapeo sistemático de la literatura
spellingShingle Detección de daños con visión artificial en inspecciones marítimas: un mapeo sistemático de la literatura
Flores, Hugo Daniel
Ciencias Informáticas
Daños
Redes Neuronales
Visión Artificial
title_short Detección de daños con visión artificial en inspecciones marítimas: un mapeo sistemático de la literatura
title_full Detección de daños con visión artificial en inspecciones marítimas: un mapeo sistemático de la literatura
title_fullStr Detección de daños con visión artificial en inspecciones marítimas: un mapeo sistemático de la literatura
title_full_unstemmed Detección de daños con visión artificial en inspecciones marítimas: un mapeo sistemático de la literatura
title_sort Detección de daños con visión artificial en inspecciones marítimas: un mapeo sistemático de la literatura
dc.creator.none.fl_str_mv Flores, Hugo Daniel
Neil, Carlos Gerardo
author Flores, Hugo Daniel
author_facet Flores, Hugo Daniel
Neil, Carlos Gerardo
author_role author
author2 Neil, Carlos Gerardo
author2_role author
dc.subject.none.fl_str_mv Ciencias Informáticas
Daños
Redes Neuronales
Visión Artificial
topic Ciencias Informáticas
Daños
Redes Neuronales
Visión Artificial
dc.description.none.fl_txt_mv Un alto porcentaje de vehículos son transportados vía marítima, donde son manipulados según protocolos específicos. Controlar su estado y detectar posibles daños recae en personal capacitado, lo que genera dificultades al momento de imputar responsabilidades por daños. Para mejorar la eficiencia de estos procesos, la visión artificial se ha consolidado como una alternativa viable para detectar y clasificar daños en distintas industrias. El objetivo de este trabajo es analizar el uso de algoritmos de inteligencia artificial para detectar y clasificar daños en la industria marítima. Se describe detalladamente la creación y ejecución de un protocolo que establece un conjunto de preguntas, así como el procedimiento para realizar la búsqueda bibliográfica y aplicar filtros para identificar los artículos relevantes. Luego, se realiza un análisis profundo para responder a las preguntas planteadas en el protocolo. Se ha demostrado que las técnicas de visión artificial basadas en Redes Neuronales Convolucionales (RNC) son altamente efectivas para implementar soluciones destinadas a la detección y clasificación de daños en esta industria. No se han identificado desarrollos tecnológicos que usen RNC para detectar y clasificar daños en transporte marítimo automotriz, por lo tanto, es viable explorar alternativas que incluyan técnicas de visión artificial para resolver los problemas planteados en la industria naviera.
Red de Universidades con Carreras en Informática
description Un alto porcentaje de vehículos son transportados vía marítima, donde son manipulados según protocolos específicos. Controlar su estado y detectar posibles daños recae en personal capacitado, lo que genera dificultades al momento de imputar responsabilidades por daños. Para mejorar la eficiencia de estos procesos, la visión artificial se ha consolidado como una alternativa viable para detectar y clasificar daños en distintas industrias. El objetivo de este trabajo es analizar el uso de algoritmos de inteligencia artificial para detectar y clasificar daños en la industria marítima. Se describe detalladamente la creación y ejecución de un protocolo que establece un conjunto de preguntas, así como el procedimiento para realizar la búsqueda bibliográfica y aplicar filtros para identificar los artículos relevantes. Luego, se realiza un análisis profundo para responder a las preguntas planteadas en el protocolo. Se ha demostrado que las técnicas de visión artificial basadas en Redes Neuronales Convolucionales (RNC) son altamente efectivas para implementar soluciones destinadas a la detección y clasificación de daños en esta industria. No se han identificado desarrollos tecnológicos que usen RNC para detectar y clasificar daños en transporte marítimo automotriz, por lo tanto, es viable explorar alternativas que incluyan técnicas de visión artificial para resolver los problemas planteados en la industria naviera.
publishDate 2023
dc.date.none.fl_str_mv 2023-10
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/164809
url http://sedici.unlp.edu.ar/handle/10915/164809
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/isbn/978-987-9285-51-0
info:eu-repo/semantics/reference/url/https://sedici.unlp.edu.ar/handle/10915/163107
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
170-180
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842260638993219584
score 13.13397