Optical and electrical properties of nanostructured metallic electrical contacts
- Autores
- Toranzos, Victor J.; Ortiz, Guillermo P.; Mochán, W. Luis; Zerbino, Jorge Omar
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study the optical and electrical properties of silver films with a graded thickness obtained through metallic evaporation in vacuum on a tilted substrate to evaluate their use as semitransparent electrical contacts. We measure their ellipsometric coefficients, optical transmissions and electrical conductivity for different widths, and we employ an efficient recursive method to calculate their macroscopic dielectric function, their optical properties and their microscopic electric fields. The topology of very thin films corresponds to disconnected islands, while very wide films are simply connected. For intermediate widths the film becomes semicontinuous, multiply connected, and its microscopic electric field develops hotspots at optical resonances which appear near the percolation threshold of the conducting phase, yielding large ohmic losses that increase the absorptance above that of a corresponding homogeneous film. Optimizing the thickness of the film to maximize its transmittance above the percolation threshold of the conductive phase we obtained a film with transmittance T = 0.41 and a sheet resistance Rsmax ≈ 2.7 Ω. We also analyze the observed emission frequency shift of porous silicon electroluminescent devices when Ag films are used as solid electrical contacts in replacement of electrolytic ones.
Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas - Materia
-
Física
Effective media
Hotspots
Recursive algorithms - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/3.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/87462
Ver los metadatos del registro completo
id |
SEDICI_09a353d72886f15993eca4aa17589b32 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/87462 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Optical and electrical properties of nanostructured metallic electrical contactsToranzos, Victor J.Ortiz, Guillermo P.Mochán, W. LuisZerbino, Jorge OmarFísicaEffective mediaHotspotsRecursive algorithmsWe study the optical and electrical properties of silver films with a graded thickness obtained through metallic evaporation in vacuum on a tilted substrate to evaluate their use as semitransparent electrical contacts. We measure their ellipsometric coefficients, optical transmissions and electrical conductivity for different widths, and we employ an efficient recursive method to calculate their macroscopic dielectric function, their optical properties and their microscopic electric fields. The topology of very thin films corresponds to disconnected islands, while very wide films are simply connected. For intermediate widths the film becomes semicontinuous, multiply connected, and its microscopic electric field develops hotspots at optical resonances which appear near the percolation threshold of the conducting phase, yielding large ohmic losses that increase the absorptance above that of a corresponding homogeneous film. Optimizing the thickness of the film to maximize its transmittance above the percolation threshold of the conductive phase we obtained a film with transmittance T = 0.41 and a sheet resistance Rsmax ≈ 2.7 Ω. We also analyze the observed emission frequency shift of porous silicon electroluminescent devices when Ag films are used as solid electrical contacts in replacement of electrolytic ones.Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas2017info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/87462enginfo:eu-repo/semantics/altIdentifier/issn/2053-1591info:eu-repo/semantics/altIdentifier/doi/10.1088/2053-1591/aa58bdinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/3.0/Creative Commons Attribution 3.0 Unported (CC BY 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:17:18Zoai:sedici.unlp.edu.ar:10915/87462Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:17:19.272SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Optical and electrical properties of nanostructured metallic electrical contacts |
title |
Optical and electrical properties of nanostructured metallic electrical contacts |
spellingShingle |
Optical and electrical properties of nanostructured metallic electrical contacts Toranzos, Victor J. Física Effective media Hotspots Recursive algorithms |
title_short |
Optical and electrical properties of nanostructured metallic electrical contacts |
title_full |
Optical and electrical properties of nanostructured metallic electrical contacts |
title_fullStr |
Optical and electrical properties of nanostructured metallic electrical contacts |
title_full_unstemmed |
Optical and electrical properties of nanostructured metallic electrical contacts |
title_sort |
Optical and electrical properties of nanostructured metallic electrical contacts |
dc.creator.none.fl_str_mv |
Toranzos, Victor J. Ortiz, Guillermo P. Mochán, W. Luis Zerbino, Jorge Omar |
author |
Toranzos, Victor J. |
author_facet |
Toranzos, Victor J. Ortiz, Guillermo P. Mochán, W. Luis Zerbino, Jorge Omar |
author_role |
author |
author2 |
Ortiz, Guillermo P. Mochán, W. Luis Zerbino, Jorge Omar |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Física Effective media Hotspots Recursive algorithms |
topic |
Física Effective media Hotspots Recursive algorithms |
dc.description.none.fl_txt_mv |
We study the optical and electrical properties of silver films with a graded thickness obtained through metallic evaporation in vacuum on a tilted substrate to evaluate their use as semitransparent electrical contacts. We measure their ellipsometric coefficients, optical transmissions and electrical conductivity for different widths, and we employ an efficient recursive method to calculate their macroscopic dielectric function, their optical properties and their microscopic electric fields. The topology of very thin films corresponds to disconnected islands, while very wide films are simply connected. For intermediate widths the film becomes semicontinuous, multiply connected, and its microscopic electric field develops hotspots at optical resonances which appear near the percolation threshold of the conducting phase, yielding large ohmic losses that increase the absorptance above that of a corresponding homogeneous film. Optimizing the thickness of the film to maximize its transmittance above the percolation threshold of the conductive phase we obtained a film with transmittance T = 0.41 and a sheet resistance Rsmax ≈ 2.7 Ω. We also analyze the observed emission frequency shift of porous silicon electroluminescent devices when Ag films are used as solid electrical contacts in replacement of electrolytic ones. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas |
description |
We study the optical and electrical properties of silver films with a graded thickness obtained through metallic evaporation in vacuum on a tilted substrate to evaluate their use as semitransparent electrical contacts. We measure their ellipsometric coefficients, optical transmissions and electrical conductivity for different widths, and we employ an efficient recursive method to calculate their macroscopic dielectric function, their optical properties and their microscopic electric fields. The topology of very thin films corresponds to disconnected islands, while very wide films are simply connected. For intermediate widths the film becomes semicontinuous, multiply connected, and its microscopic electric field develops hotspots at optical resonances which appear near the percolation threshold of the conducting phase, yielding large ohmic losses that increase the absorptance above that of a corresponding homogeneous film. Optimizing the thickness of the film to maximize its transmittance above the percolation threshold of the conductive phase we obtained a film with transmittance T = 0.41 and a sheet resistance Rsmax ≈ 2.7 Ω. We also analyze the observed emission frequency shift of porous silicon electroluminescent devices when Ag films are used as solid electrical contacts in replacement of electrolytic ones. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/87462 |
url |
http://sedici.unlp.edu.ar/handle/10915/87462 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/2053-1591 info:eu-repo/semantics/altIdentifier/doi/10.1088/2053-1591/aa58bd |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/3.0/ Creative Commons Attribution 3.0 Unported (CC BY 3.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/3.0/ Creative Commons Attribution 3.0 Unported (CC BY 3.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616046074396672 |
score |
13.070432 |