Finite-temperature properties of the Dirac operator under local boundary conditions

Autores
Beneventano, Carlota Gabriela; Santángelo, Eve Mariel
Año de publicación
2004
Idioma
español castellano
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study the finite-temperature free energy and fermion number for Dirac fields in a one-dimensional spatial segment, under two different members of the family of local boundary conditions defining a self-adjoint Euclidean Dirac operator in two dimensions. For one of such boundary conditions, compatible with the presence of a spectral asymmetry, we discuss in detail the contribution of this part of the spectrum to the zeta-regularized determinant of the Dirac operator and, thus, to the finite-temperature properties of the theory.
Facultad de Ciencias Exactas
Materia
Ciencias Exactas
Física
Finite-temperature field theory
Functional analysis
Bifurcation theory for PDEs on manifolds
General topics in linear spectral theory for PDEs
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/132144

id SEDICI_0938597c07a5ad34b3af9a1863ac8be5
oai_identifier_str oai:sedici.unlp.edu.ar:10915/132144
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Finite-temperature properties of the Dirac operator under local boundary conditionsBeneventano, Carlota GabrielaSantángelo, Eve MarielCiencias ExactasFísicaFinite-temperature field theoryFunctional analysisBifurcation theory for PDEs on manifoldsGeneral topics in linear spectral theory for PDEsWe study the finite-temperature free energy and fermion number for Dirac fields in a one-dimensional spatial segment, under two different members of the family of local boundary conditions defining a self-adjoint Euclidean Dirac operator in two dimensions. For one of such boundary conditions, compatible with the presence of a spectral asymmetry, we discuss in detail the contribution of this part of the spectrum to the zeta-regularized determinant of the Dirac operator and, thus, to the finite-temperature properties of the theory.Facultad de Ciencias Exactas2004-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf9261-9273http://sedici.unlp.edu.ar/handle/10915/132144spainfo:eu-repo/semantics/altIdentifier/issn/0305-4470info:eu-repo/semantics/altIdentifier/issn/1361-6447info:eu-repo/semantics/altIdentifier/arxiv/hep-th/0404115info:eu-repo/semantics/altIdentifier/doi/10.1088/0305-4470/37/39/013info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:31:18Zoai:sedici.unlp.edu.ar:10915/132144Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:31:18.586SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Finite-temperature properties of the Dirac operator under local boundary conditions
title Finite-temperature properties of the Dirac operator under local boundary conditions
spellingShingle Finite-temperature properties of the Dirac operator under local boundary conditions
Beneventano, Carlota Gabriela
Ciencias Exactas
Física
Finite-temperature field theory
Functional analysis
Bifurcation theory for PDEs on manifolds
General topics in linear spectral theory for PDEs
title_short Finite-temperature properties of the Dirac operator under local boundary conditions
title_full Finite-temperature properties of the Dirac operator under local boundary conditions
title_fullStr Finite-temperature properties of the Dirac operator under local boundary conditions
title_full_unstemmed Finite-temperature properties of the Dirac operator under local boundary conditions
title_sort Finite-temperature properties of the Dirac operator under local boundary conditions
dc.creator.none.fl_str_mv Beneventano, Carlota Gabriela
Santángelo, Eve Mariel
author Beneventano, Carlota Gabriela
author_facet Beneventano, Carlota Gabriela
Santángelo, Eve Mariel
author_role author
author2 Santángelo, Eve Mariel
author2_role author
dc.subject.none.fl_str_mv Ciencias Exactas
Física
Finite-temperature field theory
Functional analysis
Bifurcation theory for PDEs on manifolds
General topics in linear spectral theory for PDEs
topic Ciencias Exactas
Física
Finite-temperature field theory
Functional analysis
Bifurcation theory for PDEs on manifolds
General topics in linear spectral theory for PDEs
dc.description.none.fl_txt_mv We study the finite-temperature free energy and fermion number for Dirac fields in a one-dimensional spatial segment, under two different members of the family of local boundary conditions defining a self-adjoint Euclidean Dirac operator in two dimensions. For one of such boundary conditions, compatible with the presence of a spectral asymmetry, we discuss in detail the contribution of this part of the spectrum to the zeta-regularized determinant of the Dirac operator and, thus, to the finite-temperature properties of the theory.
Facultad de Ciencias Exactas
description We study the finite-temperature free energy and fermion number for Dirac fields in a one-dimensional spatial segment, under two different members of the family of local boundary conditions defining a self-adjoint Euclidean Dirac operator in two dimensions. For one of such boundary conditions, compatible with the presence of a spectral asymmetry, we discuss in detail the contribution of this part of the spectrum to the zeta-regularized determinant of the Dirac operator and, thus, to the finite-temperature properties of the theory.
publishDate 2004
dc.date.none.fl_str_mv 2004-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/132144
url http://sedici.unlp.edu.ar/handle/10915/132144
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/0305-4470
info:eu-repo/semantics/altIdentifier/issn/1361-6447
info:eu-repo/semantics/altIdentifier/arxiv/hep-th/0404115
info:eu-repo/semantics/altIdentifier/doi/10.1088/0305-4470/37/39/013
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
9261-9273
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616192797442048
score 13.070432