Finite-temperature properties of the Dirac operator under local boundary conditions
- Autores
- Beneventano, Carlota Gabriela; Santángelo, Eve Mariel
- Año de publicación
- 2004
- Idioma
- español castellano
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study the finite-temperature free energy and fermion number for Dirac fields in a one-dimensional spatial segment, under two different members of the family of local boundary conditions defining a self-adjoint Euclidean Dirac operator in two dimensions. For one of such boundary conditions, compatible with the presence of a spectral asymmetry, we discuss in detail the contribution of this part of the spectrum to the zeta-regularized determinant of the Dirac operator and, thus, to the finite-temperature properties of the theory.
Facultad de Ciencias Exactas - Materia
-
Ciencias Exactas
Física
Finite-temperature field theory
Functional analysis
Bifurcation theory for PDEs on manifolds
General topics in linear spectral theory for PDEs - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
.jpg)
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/132144
Ver los metadatos del registro completo
| id |
SEDICI_0938597c07a5ad34b3af9a1863ac8be5 |
|---|---|
| oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/132144 |
| network_acronym_str |
SEDICI |
| repository_id_str |
1329 |
| network_name_str |
SEDICI (UNLP) |
| spelling |
Finite-temperature properties of the Dirac operator under local boundary conditionsBeneventano, Carlota GabrielaSantángelo, Eve MarielCiencias ExactasFísicaFinite-temperature field theoryFunctional analysisBifurcation theory for PDEs on manifoldsGeneral topics in linear spectral theory for PDEsWe study the finite-temperature free energy and fermion number for Dirac fields in a one-dimensional spatial segment, under two different members of the family of local boundary conditions defining a self-adjoint Euclidean Dirac operator in two dimensions. For one of such boundary conditions, compatible with the presence of a spectral asymmetry, we discuss in detail the contribution of this part of the spectrum to the zeta-regularized determinant of the Dirac operator and, thus, to the finite-temperature properties of the theory.Facultad de Ciencias Exactas2004-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf9261-9273http://sedici.unlp.edu.ar/handle/10915/132144spainfo:eu-repo/semantics/altIdentifier/issn/0305-4470info:eu-repo/semantics/altIdentifier/issn/1361-6447info:eu-repo/semantics/altIdentifier/arxiv/hep-th/0404115info:eu-repo/semantics/altIdentifier/doi/10.1088/0305-4470/37/39/013info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-11-12T10:55:34Zoai:sedici.unlp.edu.ar:10915/132144Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-11-12 10:55:34.939SEDICI (UNLP) - Universidad Nacional de La Platafalse |
| dc.title.none.fl_str_mv |
Finite-temperature properties of the Dirac operator under local boundary conditions |
| title |
Finite-temperature properties of the Dirac operator under local boundary conditions |
| spellingShingle |
Finite-temperature properties of the Dirac operator under local boundary conditions Beneventano, Carlota Gabriela Ciencias Exactas Física Finite-temperature field theory Functional analysis Bifurcation theory for PDEs on manifolds General topics in linear spectral theory for PDEs |
| title_short |
Finite-temperature properties of the Dirac operator under local boundary conditions |
| title_full |
Finite-temperature properties of the Dirac operator under local boundary conditions |
| title_fullStr |
Finite-temperature properties of the Dirac operator under local boundary conditions |
| title_full_unstemmed |
Finite-temperature properties of the Dirac operator under local boundary conditions |
| title_sort |
Finite-temperature properties of the Dirac operator under local boundary conditions |
| dc.creator.none.fl_str_mv |
Beneventano, Carlota Gabriela Santángelo, Eve Mariel |
| author |
Beneventano, Carlota Gabriela |
| author_facet |
Beneventano, Carlota Gabriela Santángelo, Eve Mariel |
| author_role |
author |
| author2 |
Santángelo, Eve Mariel |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
Ciencias Exactas Física Finite-temperature field theory Functional analysis Bifurcation theory for PDEs on manifolds General topics in linear spectral theory for PDEs |
| topic |
Ciencias Exactas Física Finite-temperature field theory Functional analysis Bifurcation theory for PDEs on manifolds General topics in linear spectral theory for PDEs |
| dc.description.none.fl_txt_mv |
We study the finite-temperature free energy and fermion number for Dirac fields in a one-dimensional spatial segment, under two different members of the family of local boundary conditions defining a self-adjoint Euclidean Dirac operator in two dimensions. For one of such boundary conditions, compatible with the presence of a spectral asymmetry, we discuss in detail the contribution of this part of the spectrum to the zeta-regularized determinant of the Dirac operator and, thus, to the finite-temperature properties of the theory. Facultad de Ciencias Exactas |
| description |
We study the finite-temperature free energy and fermion number for Dirac fields in a one-dimensional spatial segment, under two different members of the family of local boundary conditions defining a self-adjoint Euclidean Dirac operator in two dimensions. For one of such boundary conditions, compatible with the presence of a spectral asymmetry, we discuss in detail the contribution of this part of the spectrum to the zeta-regularized determinant of the Dirac operator and, thus, to the finite-temperature properties of the theory. |
| publishDate |
2004 |
| dc.date.none.fl_str_mv |
2004-09 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/132144 |
| url |
http://sedici.unlp.edu.ar/handle/10915/132144 |
| dc.language.none.fl_str_mv |
spa |
| language |
spa |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/0305-4470 info:eu-repo/semantics/altIdentifier/issn/1361-6447 info:eu-repo/semantics/altIdentifier/arxiv/hep-th/0404115 info:eu-repo/semantics/altIdentifier/doi/10.1088/0305-4470/37/39/013 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
| dc.format.none.fl_str_mv |
application/pdf 9261-9273 |
| dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
| reponame_str |
SEDICI (UNLP) |
| collection |
SEDICI (UNLP) |
| instname_str |
Universidad Nacional de La Plata |
| instacron_str |
UNLP |
| institution |
UNLP |
| repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
| repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
| _version_ |
1848605661582065664 |
| score |
13.24909 |