Connection coefficients of interval wavelets satisfying boundary conditions

Autores
Morillas, Patricia Mariela
Año de publicación
2009
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The computation of connection coefficients is an important issue in the wavelet numerical solution of partial differential equations. We study this problem for the orthonormal interval wavelets bases, satisfying homogeneous boundary conditions, introduced by Monasse and Perrier. We first obtain explicit expressions to compute the connection coefficients involving (derivatives of) scaling functions at the same level. Then we describe how to compute connection coefficients when we have (derivatives of) scaling functions and/or wavelets at different levels, using local refinement relations.
Fil: Morillas, Patricia Mariela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina
Materia
INTERVAL WAVELETS
CONNECTION COEFFICIENTS
NUMERICAL SOLUTION OF PDES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/133837

id CONICETDig_3d818188a9015a84deae6fdc6b2586b4
oai_identifier_str oai:ri.conicet.gov.ar:11336/133837
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Connection coefficients of interval wavelets satisfying boundary conditionsMorillas, Patricia MarielaINTERVAL WAVELETSCONNECTION COEFFICIENTSNUMERICAL SOLUTION OF PDEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The computation of connection coefficients is an important issue in the wavelet numerical solution of partial differential equations. We study this problem for the orthonormal interval wavelets bases, satisfying homogeneous boundary conditions, introduced by Monasse and Perrier. We first obtain explicit expressions to compute the connection coefficients involving (derivatives of) scaling functions at the same level. Then we describe how to compute connection coefficients when we have (derivatives of) scaling functions and/or wavelets at different levels, using local refinement relations.Fil: Morillas, Patricia Mariela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; ArgentinaSAS International Publications2009-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/133837Morillas, Patricia Mariela; Connection coefficients of interval wavelets satisfying boundary conditions; SAS International Publications; Journal of Computational Mathematics and Optimization; 5; 2; 5-2009; 101-1190972-9372CONICET DigitalCONICETenginfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:51:59Zoai:ri.conicet.gov.ar:11336/133837instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:51:59.994CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Connection coefficients of interval wavelets satisfying boundary conditions
title Connection coefficients of interval wavelets satisfying boundary conditions
spellingShingle Connection coefficients of interval wavelets satisfying boundary conditions
Morillas, Patricia Mariela
INTERVAL WAVELETS
CONNECTION COEFFICIENTS
NUMERICAL SOLUTION OF PDES
title_short Connection coefficients of interval wavelets satisfying boundary conditions
title_full Connection coefficients of interval wavelets satisfying boundary conditions
title_fullStr Connection coefficients of interval wavelets satisfying boundary conditions
title_full_unstemmed Connection coefficients of interval wavelets satisfying boundary conditions
title_sort Connection coefficients of interval wavelets satisfying boundary conditions
dc.creator.none.fl_str_mv Morillas, Patricia Mariela
author Morillas, Patricia Mariela
author_facet Morillas, Patricia Mariela
author_role author
dc.subject.none.fl_str_mv INTERVAL WAVELETS
CONNECTION COEFFICIENTS
NUMERICAL SOLUTION OF PDES
topic INTERVAL WAVELETS
CONNECTION COEFFICIENTS
NUMERICAL SOLUTION OF PDES
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The computation of connection coefficients is an important issue in the wavelet numerical solution of partial differential equations. We study this problem for the orthonormal interval wavelets bases, satisfying homogeneous boundary conditions, introduced by Monasse and Perrier. We first obtain explicit expressions to compute the connection coefficients involving (derivatives of) scaling functions at the same level. Then we describe how to compute connection coefficients when we have (derivatives of) scaling functions and/or wavelets at different levels, using local refinement relations.
Fil: Morillas, Patricia Mariela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina
description The computation of connection coefficients is an important issue in the wavelet numerical solution of partial differential equations. We study this problem for the orthonormal interval wavelets bases, satisfying homogeneous boundary conditions, introduced by Monasse and Perrier. We first obtain explicit expressions to compute the connection coefficients involving (derivatives of) scaling functions at the same level. Then we describe how to compute connection coefficients when we have (derivatives of) scaling functions and/or wavelets at different levels, using local refinement relations.
publishDate 2009
dc.date.none.fl_str_mv 2009-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/133837
Morillas, Patricia Mariela; Connection coefficients of interval wavelets satisfying boundary conditions; SAS International Publications; Journal of Computational Mathematics and Optimization; 5; 2; 5-2009; 101-119
0972-9372
CONICET Digital
CONICET
url http://hdl.handle.net/11336/133837
identifier_str_mv Morillas, Patricia Mariela; Connection coefficients of interval wavelets satisfying boundary conditions; SAS International Publications; Journal of Computational Mathematics and Optimization; 5; 2; 5-2009; 101-119
0972-9372
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv SAS International Publications
publisher.none.fl_str_mv SAS International Publications
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613596613443584
score 13.070432