Vector-based word representations for sentiment analysis: a comparative study

Autores
Villegas, María Paula; Garciarena Ucelay, María José; Fernández, Juan Pablo; Álvarez Carmona, Miguel A.; Errecalde, Marcelo Luis; Cagnina, Leticia
Año de publicación
2016
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
New applications of text categorization methods like opinion mining and sentiment analysis, author profiling and plagiarism detection requires more elaborated and effective document representation models than classical Information Retrieval approaches like the Bag of Words representation. In this context, word representation models in general and vector-based word representations in particular have gained increasing interest to overcome or alleviate some of the limitations that Bag of Words-based representations exhibit. In this article, we analyze the use of several vector-based word representations in a sentiment analysis task with movie reviews. Experimental results show the effectiveness of some vector-based word representations in comparison to standard Bag of Words representations. In particular, the Second Order Attributes representation seems to be very robust and effective because independently the classifier used with, the results are good.
XIII Workshop Bases de datos y Minería de Datos (WBDMD).
Red de Universidades con Carreras en Informática (RedUNCI)
Materia
Ciencias Informáticas
text mining
word-based representations
text categorization
movie reviews
sentiment analysis
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/56763

id SEDICI_0598fe5c59b1acc18d9e7ca61751a734
oai_identifier_str oai:sedici.unlp.edu.ar:10915/56763
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Vector-based word representations for sentiment analysis: a comparative studyVillegas, María PaulaGarciarena Ucelay, María JoséFernández, Juan PabloÁlvarez Carmona, Miguel A.Errecalde, Marcelo LuisCagnina, LeticiaCiencias Informáticastext miningword-based representationstext categorizationmovie reviewssentiment analysisNew applications of text categorization methods like opinion mining and sentiment analysis, author profiling and plagiarism detection requires more elaborated and effective document representation models than classical Information Retrieval approaches like the Bag of Words representation. In this context, word representation models in general and vector-based word representations in particular have gained increasing interest to overcome or alleviate some of the limitations that Bag of Words-based representations exhibit. In this article, we analyze the use of several vector-based word representations in a sentiment analysis task with movie reviews. Experimental results show the effectiveness of some vector-based word representations in comparison to standard Bag of Words representations. In particular, the Second Order Attributes representation seems to be very robust and effective because independently the classifier used with, the results are good.XIII Workshop Bases de datos y Minería de Datos (WBDMD).Red de Universidades con Carreras en Informática (RedUNCI)2016-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf785-793http://sedici.unlp.edu.ar/handle/10915/56763enginfo:eu-repo/semantics/reference/hdl/10915/55718info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:06:08Zoai:sedici.unlp.edu.ar:10915/56763Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:06:08.409SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Vector-based word representations for sentiment analysis: a comparative study
title Vector-based word representations for sentiment analysis: a comparative study
spellingShingle Vector-based word representations for sentiment analysis: a comparative study
Villegas, María Paula
Ciencias Informáticas
text mining
word-based representations
text categorization
movie reviews
sentiment analysis
title_short Vector-based word representations for sentiment analysis: a comparative study
title_full Vector-based word representations for sentiment analysis: a comparative study
title_fullStr Vector-based word representations for sentiment analysis: a comparative study
title_full_unstemmed Vector-based word representations for sentiment analysis: a comparative study
title_sort Vector-based word representations for sentiment analysis: a comparative study
dc.creator.none.fl_str_mv Villegas, María Paula
Garciarena Ucelay, María José
Fernández, Juan Pablo
Álvarez Carmona, Miguel A.
Errecalde, Marcelo Luis
Cagnina, Leticia
author Villegas, María Paula
author_facet Villegas, María Paula
Garciarena Ucelay, María José
Fernández, Juan Pablo
Álvarez Carmona, Miguel A.
Errecalde, Marcelo Luis
Cagnina, Leticia
author_role author
author2 Garciarena Ucelay, María José
Fernández, Juan Pablo
Álvarez Carmona, Miguel A.
Errecalde, Marcelo Luis
Cagnina, Leticia
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
text mining
word-based representations
text categorization
movie reviews
sentiment analysis
topic Ciencias Informáticas
text mining
word-based representations
text categorization
movie reviews
sentiment analysis
dc.description.none.fl_txt_mv New applications of text categorization methods like opinion mining and sentiment analysis, author profiling and plagiarism detection requires more elaborated and effective document representation models than classical Information Retrieval approaches like the Bag of Words representation. In this context, word representation models in general and vector-based word representations in particular have gained increasing interest to overcome or alleviate some of the limitations that Bag of Words-based representations exhibit. In this article, we analyze the use of several vector-based word representations in a sentiment analysis task with movie reviews. Experimental results show the effectiveness of some vector-based word representations in comparison to standard Bag of Words representations. In particular, the Second Order Attributes representation seems to be very robust and effective because independently the classifier used with, the results are good.
XIII Workshop Bases de datos y Minería de Datos (WBDMD).
Red de Universidades con Carreras en Informática (RedUNCI)
description New applications of text categorization methods like opinion mining and sentiment analysis, author profiling and plagiarism detection requires more elaborated and effective document representation models than classical Information Retrieval approaches like the Bag of Words representation. In this context, word representation models in general and vector-based word representations in particular have gained increasing interest to overcome or alleviate some of the limitations that Bag of Words-based representations exhibit. In this article, we analyze the use of several vector-based word representations in a sentiment analysis task with movie reviews. Experimental results show the effectiveness of some vector-based word representations in comparison to standard Bag of Words representations. In particular, the Second Order Attributes representation seems to be very robust and effective because independently the classifier used with, the results are good.
publishDate 2016
dc.date.none.fl_str_mv 2016-10
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/56763
url http://sedici.unlp.edu.ar/handle/10915/56763
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/reference/hdl/10915/55718
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
785-793
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844615932203237376
score 13.070432