Vector-based word representations for sentiment analysis: a comparative study
- Autores
- Villegas, María Paula; Garciarena Ucelay, María José; Fernández, Juan Pablo; Álvarez Carmona, Miguel A.; Errecalde, Marcelo Luis; Cagnina, Leticia
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- New applications of text categorization methods like opinion mining and sentiment analysis, author profiling and plagiarism detection requires more elaborated and effective document representation models than classical Information Retrieval approaches like the Bag of Words representation. In this context, word representation models in general and vector-based word representations in particular have gained increasing interest to overcome or alleviate some of the limitations that Bag of Words-based representations exhibit. In this article, we analyze the use of several vector-based word representations in a sentiment analysis task with movie reviews. Experimental results show the effectiveness of some vector-based word representations in comparison to standard Bag of Words representations. In particular, the Second Order Attributes representation seems to be very robust and effective because independently the classifier used with, the results are good.
XIII Workshop Bases de datos y Minería de Datos (WBDMD).
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
text mining
word-based representations
text categorization
movie reviews
sentiment analysis - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/56763
Ver los metadatos del registro completo
id |
SEDICI_0598fe5c59b1acc18d9e7ca61751a734 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/56763 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Vector-based word representations for sentiment analysis: a comparative studyVillegas, María PaulaGarciarena Ucelay, María JoséFernández, Juan PabloÁlvarez Carmona, Miguel A.Errecalde, Marcelo LuisCagnina, LeticiaCiencias Informáticastext miningword-based representationstext categorizationmovie reviewssentiment analysisNew applications of text categorization methods like opinion mining and sentiment analysis, author profiling and plagiarism detection requires more elaborated and effective document representation models than classical Information Retrieval approaches like the Bag of Words representation. In this context, word representation models in general and vector-based word representations in particular have gained increasing interest to overcome or alleviate some of the limitations that Bag of Words-based representations exhibit. In this article, we analyze the use of several vector-based word representations in a sentiment analysis task with movie reviews. Experimental results show the effectiveness of some vector-based word representations in comparison to standard Bag of Words representations. In particular, the Second Order Attributes representation seems to be very robust and effective because independently the classifier used with, the results are good.XIII Workshop Bases de datos y Minería de Datos (WBDMD).Red de Universidades con Carreras en Informática (RedUNCI)2016-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf785-793http://sedici.unlp.edu.ar/handle/10915/56763enginfo:eu-repo/semantics/reference/hdl/10915/55718info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:06:08Zoai:sedici.unlp.edu.ar:10915/56763Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:06:08.409SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Vector-based word representations for sentiment analysis: a comparative study |
title |
Vector-based word representations for sentiment analysis: a comparative study |
spellingShingle |
Vector-based word representations for sentiment analysis: a comparative study Villegas, María Paula Ciencias Informáticas text mining word-based representations text categorization movie reviews sentiment analysis |
title_short |
Vector-based word representations for sentiment analysis: a comparative study |
title_full |
Vector-based word representations for sentiment analysis: a comparative study |
title_fullStr |
Vector-based word representations for sentiment analysis: a comparative study |
title_full_unstemmed |
Vector-based word representations for sentiment analysis: a comparative study |
title_sort |
Vector-based word representations for sentiment analysis: a comparative study |
dc.creator.none.fl_str_mv |
Villegas, María Paula Garciarena Ucelay, María José Fernández, Juan Pablo Álvarez Carmona, Miguel A. Errecalde, Marcelo Luis Cagnina, Leticia |
author |
Villegas, María Paula |
author_facet |
Villegas, María Paula Garciarena Ucelay, María José Fernández, Juan Pablo Álvarez Carmona, Miguel A. Errecalde, Marcelo Luis Cagnina, Leticia |
author_role |
author |
author2 |
Garciarena Ucelay, María José Fernández, Juan Pablo Álvarez Carmona, Miguel A. Errecalde, Marcelo Luis Cagnina, Leticia |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas text mining word-based representations text categorization movie reviews sentiment analysis |
topic |
Ciencias Informáticas text mining word-based representations text categorization movie reviews sentiment analysis |
dc.description.none.fl_txt_mv |
New applications of text categorization methods like opinion mining and sentiment analysis, author profiling and plagiarism detection requires more elaborated and effective document representation models than classical Information Retrieval approaches like the Bag of Words representation. In this context, word representation models in general and vector-based word representations in particular have gained increasing interest to overcome or alleviate some of the limitations that Bag of Words-based representations exhibit. In this article, we analyze the use of several vector-based word representations in a sentiment analysis task with movie reviews. Experimental results show the effectiveness of some vector-based word representations in comparison to standard Bag of Words representations. In particular, the Second Order Attributes representation seems to be very robust and effective because independently the classifier used with, the results are good. XIII Workshop Bases de datos y Minería de Datos (WBDMD). Red de Universidades con Carreras en Informática (RedUNCI) |
description |
New applications of text categorization methods like opinion mining and sentiment analysis, author profiling and plagiarism detection requires more elaborated and effective document representation models than classical Information Retrieval approaches like the Bag of Words representation. In this context, word representation models in general and vector-based word representations in particular have gained increasing interest to overcome or alleviate some of the limitations that Bag of Words-based representations exhibit. In this article, we analyze the use of several vector-based word representations in a sentiment analysis task with movie reviews. Experimental results show the effectiveness of some vector-based word representations in comparison to standard Bag of Words representations. In particular, the Second Order Attributes representation seems to be very robust and effective because independently the classifier used with, the results are good. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/56763 |
url |
http://sedici.unlp.edu.ar/handle/10915/56763 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/reference/hdl/10915/55718 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 785-793 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844615932203237376 |
score |
13.070432 |