Perfiles de usuario para agentes de interfaz: un análisis de técnicas de aprendizaje
- Autores
- Anacleto, Valerio Adrián
- Año de publicación
- 2003
- Idioma
- español castellano
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Agents that help users when they buy products on the Web promise to be a suitable way for transforming the overloaded world of web offers into a nice shop with personalized assistance. This promise depends closely on the efficiency of these agents to determine the preferences and habits of their customers. In this context, we have built an agent named Vendor that interacts with web customers. Through this agent we analyze three of the machine learning techniques that present advantageous characteristics for building user profiles. Thus, Bayesian networks, genetic algorithms, and neural networks have been compared for customer profiling.
Sociedad Argentina de Informática e Investigación Operativa - Materia
-
Ciencias Informáticas
perfil de usuario
agentes de interfaz
Comercio electrónico - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/184496
Ver los metadatos del registro completo
id |
SEDICI_0319fbec3b0f2d5b1934c06518c8c465 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/184496 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Perfiles de usuario para agentes de interfaz: un análisis de técnicas de aprendizajeAnacleto, Valerio AdriánCiencias Informáticasperfil de usuarioagentes de interfazComercio electrónicoAgents that help users when they buy products on the Web promise to be a suitable way for transforming the overloaded world of web offers into a nice shop with personalized assistance. This promise depends closely on the efficiency of these agents to determine the preferences and habits of their customers. In this context, we have built an agent named Vendor that interacts with web customers. Through this agent we analyze three of the machine learning techniques that present advantageous characteristics for building user profiles. Thus, Bayesian networks, genetic algorithms, and neural networks have been compared for customer profiling.Sociedad Argentina de Informática e Investigación Operativa2003-09info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/184496spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:50:08Zoai:sedici.unlp.edu.ar:10915/184496Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:50:08.912SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Perfiles de usuario para agentes de interfaz: un análisis de técnicas de aprendizaje |
title |
Perfiles de usuario para agentes de interfaz: un análisis de técnicas de aprendizaje |
spellingShingle |
Perfiles de usuario para agentes de interfaz: un análisis de técnicas de aprendizaje Anacleto, Valerio Adrián Ciencias Informáticas perfil de usuario agentes de interfaz Comercio electrónico |
title_short |
Perfiles de usuario para agentes de interfaz: un análisis de técnicas de aprendizaje |
title_full |
Perfiles de usuario para agentes de interfaz: un análisis de técnicas de aprendizaje |
title_fullStr |
Perfiles de usuario para agentes de interfaz: un análisis de técnicas de aprendizaje |
title_full_unstemmed |
Perfiles de usuario para agentes de interfaz: un análisis de técnicas de aprendizaje |
title_sort |
Perfiles de usuario para agentes de interfaz: un análisis de técnicas de aprendizaje |
dc.creator.none.fl_str_mv |
Anacleto, Valerio Adrián |
author |
Anacleto, Valerio Adrián |
author_facet |
Anacleto, Valerio Adrián |
author_role |
author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas perfil de usuario agentes de interfaz Comercio electrónico |
topic |
Ciencias Informáticas perfil de usuario agentes de interfaz Comercio electrónico |
dc.description.none.fl_txt_mv |
Agents that help users when they buy products on the Web promise to be a suitable way for transforming the overloaded world of web offers into a nice shop with personalized assistance. This promise depends closely on the efficiency of these agents to determine the preferences and habits of their customers. In this context, we have built an agent named Vendor that interacts with web customers. Through this agent we analyze three of the machine learning techniques that present advantageous characteristics for building user profiles. Thus, Bayesian networks, genetic algorithms, and neural networks have been compared for customer profiling. Sociedad Argentina de Informática e Investigación Operativa |
description |
Agents that help users when they buy products on the Web promise to be a suitable way for transforming the overloaded world of web offers into a nice shop with personalized assistance. This promise depends closely on the efficiency of these agents to determine the preferences and habits of their customers. In this context, we have built an agent named Vendor that interacts with web customers. Through this agent we analyze three of the machine learning techniques that present advantageous characteristics for building user profiles. Thus, Bayesian networks, genetic algorithms, and neural networks have been compared for customer profiling. |
publishDate |
2003 |
dc.date.none.fl_str_mv |
2003-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/184496 |
url |
http://sedici.unlp.edu.ar/handle/10915/184496 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616361091792896 |
score |
13.069144 |