Componentes principales esféricas y matriz de covariancia de determinante mínimo: una aplicación sobre indicadores de carencias críticas
- Autores
- Ciccioli, Patricia; Bussi, Javier
- Año de publicación
- 2016
- Idioma
- español castellano
- Tipo de recurso
- documento de conferencia
- Estado
- versión aceptada
- Descripción
- En este trabajo se presentan dos técnicas robustas para el análisis de componentes principales: Matriz de Covariancia de Determinante Mínimo (MCD) y Componentes Principales Esféricas (SPC) y se las compara con el Análisis de Componentes Principales (ACP) clásico en una aplicación sobre indicadores de carencias críticas. Para poder resumir las diferencias sociales y económicas existentes entre las ciudades y comunas de Santa Fe es necesario retener más componentes principales en los métodos robustos (MCD y SPC) que en el método clásico. Se observa que para el método clásico solo una componente principal es suficiente mientras que, para los métodos robustos MCD y SPC se necesitan al menos dos componentes principales para poder resumir las diferencias presentes en los datos. Puede notarse que las variables que más aportan en la conformación de la primera componente principal en el método clásico son aquellas que contienen una mayor variabilidad en los datos con una gran cantidad de outliers dispersos, los cuales toman valores altos. De esta manera, se puede observar que el método clásico está influenciado por valores extremos, dando resultados e interpretaciones que pueden estar alejados del comportamiento del conjunto central de datos que representa la gran mayoría de ellos
Fil: Fil: Ciccioli, Patricia - Facultad Ciencias Económicas y Estadística - Universidad Nacional de Rosario - Argentina - Materia
-
covariancia
carencias críticas
Componentes Principales (ACP) - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- Atribución – No Comercial – Compartir Igual (by-nc-sa)
- Repositorio
- Institución
- Universidad Nacional de Rosario
- OAI Identificador
- oai:rephip.unr.edu.ar:2133/7611
Ver los metadatos del registro completo
id |
RepHipUNR_e37dc113a1b9a8f253f685c365603e61 |
---|---|
oai_identifier_str |
oai:rephip.unr.edu.ar:2133/7611 |
network_acronym_str |
RepHipUNR |
repository_id_str |
1550 |
network_name_str |
RepHipUNR (UNR) |
spelling |
Componentes principales esféricas y matriz de covariancia de determinante mínimo: una aplicación sobre indicadores de carencias críticasCiccioli, PatriciaBussi, Javiercovarianciacarencias críticasComponentes Principales (ACP)En este trabajo se presentan dos técnicas robustas para el análisis de componentes principales: Matriz de Covariancia de Determinante Mínimo (MCD) y Componentes Principales Esféricas (SPC) y se las compara con el Análisis de Componentes Principales (ACP) clásico en una aplicación sobre indicadores de carencias críticas. Para poder resumir las diferencias sociales y económicas existentes entre las ciudades y comunas de Santa Fe es necesario retener más componentes principales en los métodos robustos (MCD y SPC) que en el método clásico. Se observa que para el método clásico solo una componente principal es suficiente mientras que, para los métodos robustos MCD y SPC se necesitan al menos dos componentes principales para poder resumir las diferencias presentes en los datos. Puede notarse que las variables que más aportan en la conformación de la primera componente principal en el método clásico son aquellas que contienen una mayor variabilidad en los datos con una gran cantidad de outliers dispersos, los cuales toman valores altos. De esta manera, se puede observar que el método clásico está influenciado por valores extremos, dando resultados e interpretaciones que pueden estar alejados del comportamiento del conjunto central de datos que representa la gran mayoría de ellosFil: Fil: Ciccioli, Patricia - Facultad Ciencias Económicas y Estadística - Universidad Nacional de Rosario - ArgentinaSecretaría de Ciencia y Tecnología. Facultad de Ciencias Económicas y Estadística. Universidad Nacional de Rosario2016-11info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://hdl.handle.net/2133/7611urn:issn: 1668-5008spahttps://www.fcecon.unr.edu.ar/web-nueva/investigacion/actas-de-las-jornadas-anualesinfo:eu-repo/semantics/openAccessAtribución – No Comercial – Compartir Igual (by-nc-sa)http://creativecommons.org/licenses/by-nc-sa/2.5/ar/Licencia RepHipreponame:RepHipUNR (UNR)instname:Universidad Nacional de Rosario2025-09-29T13:40:50Zoai:rephip.unr.edu.ar:2133/7611instacron:UNRInstitucionalhttps://rephip.unr.edu.ar/Universidad públicaNo correspondehttps://rephip.unr.edu.ar/oai/requestrephip@unr.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:15502025-09-29 13:40:50.375RepHipUNR (UNR) - Universidad Nacional de Rosariofalse |
dc.title.none.fl_str_mv |
Componentes principales esféricas y matriz de covariancia de determinante mínimo: una aplicación sobre indicadores de carencias críticas |
title |
Componentes principales esféricas y matriz de covariancia de determinante mínimo: una aplicación sobre indicadores de carencias críticas |
spellingShingle |
Componentes principales esféricas y matriz de covariancia de determinante mínimo: una aplicación sobre indicadores de carencias críticas Ciccioli, Patricia covariancia carencias críticas Componentes Principales (ACP) |
title_short |
Componentes principales esféricas y matriz de covariancia de determinante mínimo: una aplicación sobre indicadores de carencias críticas |
title_full |
Componentes principales esféricas y matriz de covariancia de determinante mínimo: una aplicación sobre indicadores de carencias críticas |
title_fullStr |
Componentes principales esféricas y matriz de covariancia de determinante mínimo: una aplicación sobre indicadores de carencias críticas |
title_full_unstemmed |
Componentes principales esféricas y matriz de covariancia de determinante mínimo: una aplicación sobre indicadores de carencias críticas |
title_sort |
Componentes principales esféricas y matriz de covariancia de determinante mínimo: una aplicación sobre indicadores de carencias críticas |
dc.creator.none.fl_str_mv |
Ciccioli, Patricia Bussi, Javier |
author |
Ciccioli, Patricia |
author_facet |
Ciccioli, Patricia Bussi, Javier |
author_role |
author |
author2 |
Bussi, Javier |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Secretaría de Ciencia y Tecnología. Facultad de Ciencias Económicas y Estadística. Universidad Nacional de Rosario |
dc.subject.none.fl_str_mv |
covariancia carencias críticas Componentes Principales (ACP) |
topic |
covariancia carencias críticas Componentes Principales (ACP) |
dc.description.none.fl_txt_mv |
En este trabajo se presentan dos técnicas robustas para el análisis de componentes principales: Matriz de Covariancia de Determinante Mínimo (MCD) y Componentes Principales Esféricas (SPC) y se las compara con el Análisis de Componentes Principales (ACP) clásico en una aplicación sobre indicadores de carencias críticas. Para poder resumir las diferencias sociales y económicas existentes entre las ciudades y comunas de Santa Fe es necesario retener más componentes principales en los métodos robustos (MCD y SPC) que en el método clásico. Se observa que para el método clásico solo una componente principal es suficiente mientras que, para los métodos robustos MCD y SPC se necesitan al menos dos componentes principales para poder resumir las diferencias presentes en los datos. Puede notarse que las variables que más aportan en la conformación de la primera componente principal en el método clásico son aquellas que contienen una mayor variabilidad en los datos con una gran cantidad de outliers dispersos, los cuales toman valores altos. De esta manera, se puede observar que el método clásico está influenciado por valores extremos, dando resultados e interpretaciones que pueden estar alejados del comportamiento del conjunto central de datos que representa la gran mayoría de ellos Fil: Fil: Ciccioli, Patricia - Facultad Ciencias Económicas y Estadística - Universidad Nacional de Rosario - Argentina |
description |
En este trabajo se presentan dos técnicas robustas para el análisis de componentes principales: Matriz de Covariancia de Determinante Mínimo (MCD) y Componentes Principales Esféricas (SPC) y se las compara con el Análisis de Componentes Principales (ACP) clásico en una aplicación sobre indicadores de carencias críticas. Para poder resumir las diferencias sociales y económicas existentes entre las ciudades y comunas de Santa Fe es necesario retener más componentes principales en los métodos robustos (MCD y SPC) que en el método clásico. Se observa que para el método clásico solo una componente principal es suficiente mientras que, para los métodos robustos MCD y SPC se necesitan al menos dos componentes principales para poder resumir las diferencias presentes en los datos. Puede notarse que las variables que más aportan en la conformación de la primera componente principal en el método clásico son aquellas que contienen una mayor variabilidad en los datos con una gran cantidad de outliers dispersos, los cuales toman valores altos. De esta manera, se puede observar que el método clásico está influenciado por valores extremos, dando resultados e interpretaciones que pueden estar alejados del comportamiento del conjunto central de datos que representa la gran mayoría de ellos |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/acceptedVersion http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
acceptedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/2133/7611 urn:issn: 1668-5008 |
url |
http://hdl.handle.net/2133/7611 |
identifier_str_mv |
urn:issn: 1668-5008 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
https://www.fcecon.unr.edu.ar/web-nueva/investigacion/actas-de-las-jornadas-anuales |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess Atribución – No Comercial – Compartir Igual (by-nc-sa) http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Licencia RepHip |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
Atribución – No Comercial – Compartir Igual (by-nc-sa) http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Licencia RepHip |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:RepHipUNR (UNR) instname:Universidad Nacional de Rosario |
reponame_str |
RepHipUNR (UNR) |
collection |
RepHipUNR (UNR) |
instname_str |
Universidad Nacional de Rosario |
repository.name.fl_str_mv |
RepHipUNR (UNR) - Universidad Nacional de Rosario |
repository.mail.fl_str_mv |
rephip@unr.edu.ar |
_version_ |
1844618774521577472 |
score |
13.070432 |