Caracterización estructural y funcional del termosensor DesK de Bacillus subtilis

Autores
Saita, Emilio Adolfo
Año de publicación
2016
Idioma
español castellano
Tipo de recurso
tesis doctoral
Estado
versión aceptada
Colaborador/a o director/a de tesis
De Mendoza, Diego
Albanesi, Daniela
Descripción
. subtilis se adapta rápidamente a disminuciones de temperatura mediante un mecanismo denominado vía Des, el cual es controlado por el sistema de dos componentes DesK/DesR. El termosensor DesK es el encargado de detectar cambios en la temperatura ambiental y regular la transcripción del gen des que codifica para una Δ5 acil lípido desaturasa, la cual genera insaturaciones en los ácidos grasos de los fosfolípidos de la membrana plasmática modificando la fluidez de la misma. En este trabajo de tesis nos propusimos estudiar los eventos moleculares que tienen lugar en los segmentos transmembrana (TM) de DesK durante la detección de la señal de temperatura. La estrategia inicial que decidimos aplicar es la marcación de spin sitio-dirigida y posterior medición por resonancia paramagnética electrónica (EPR). Dicha estrategia implica la unión de una sonda de spin a residuos de cisteína ubicados en diferentes posiciones de los segmentos TM, para estudiar la dinámica de los mismos en membranas artificiales. Este procedimiento requiere de la purificación de las proteínas en estudio a homogeneidad. Hasta la escritura de esta tesis, los estudios in vitro de DesK completa requerían de la utilización de un sistema de expresión in vitro. Aunque el sistema libre de células ha demostrado ser adecuado para la expresión de DesK, el mismo es muy costosos para ser usado de forma rutinaria. Por este motivo, en una primera instancia nos enfocamos en desarrollar un protocolo que permitiese purificar DesK a partir de cultivos bacterianos, en concentración y pureza suficientes para estudios biofísicos posteriores a un costo reducido. Con este fin, ensayamos diversas estrategias para la expresión y purificación de DesK, incluyendo diferentes vectores de expresión, medios de cultivo, condiciones de crecimiento para la expresión proteica, detergentes para la solubilización de las proteínas de membrana y diversas técnicas cromatográfícas. En función de los resultados obtenidos planificamos un protocolo que permitirán purificar DesK a homogeneidad en micelas de detergente. Resultados posteriores mostraron que la integración de DesK en liposomas permite incrementar la pureza de la misma, indicando que sería posible realizar la marcación con la sonda de spin de las proteínas purificadas en detergente, y posteriormente reconstituir las mismas en liposomas para las subsiguientes mediciones por EPR. Por otra parte, a partir de un análisis informático de covariancia de residuos identificamos pares de aminoácidos con alta probabilidad de interaccionar, ya sea por su cercanía en la estructura cuaternaria, o a través del esqueleto peptídico de DesK. En función a estos resultados seleccionamos posiciones de los segmentos TM que próximamente se reemplazarán por cisteínas, generando variantes de DesK con mutaciones puntuales, para su posterior marcación con la sonda de spin y mediciones de EPR. Estos experimentos ermitirían obtener información estructural y dinámica de los segmentos TM durante la detección de la señal de temperatura. En base a predicciones de estructura secundaria junto con el análisis de las estructuras cristalográficas de la porción catalítica soluble de DesK (DesKC) en distintos estados funcionales, identificamos un motivo de hélices enrolladas (2-HCC) que conecta el dominio TM sensor y el dominio catalítico soluble. La construcción de dos variantes de DesK en las cuales se estabilizó (DesKSTA) o desestabilizó (DesKDEST) el dominio 2-HCC mediante mutaciones puntuales permitió determinar que este motivo juega un rol importante en la regulación de las actividades catalíticas de DesK. Además, de acuerdo con medidas de actividad in vitro de DesK salvaje y DesKSTA insertadas en liposomas, y a ensayos de dinámica molecular de modelos atómicos de DesK salvaje, DesKDEST y DesKSTA, se propuso que en el estado fosfatasa las hélices del segmento TM5 podrían continuar formando un 2-HCC a través de toda la membrana, y que la hidratación de este motivo podría favorecer la apertura del mismo durante la transición al estado auto-quinasa. Por otra parte, se construyeron modelos del estado fosfatasa y auto-quinasa de una quimera funcional de DesK (MS-DesK), la cual posee un único segmento TM por monómero, generado por la fusión de los 17 residuos N-terminales de DesK a los 14 residuos C-terminales del TM5 de DesK. En función a ensayos de dinámica molecular de estos modelos embebidos en bicapas lipídicas de diferente espesor, se propuso un modelo para la detección y transmisión de la señal de temperatura por parte de MS-DesK. En este modelo, a 37 ºC la membrana se encuentra fluida y delgada, y MS-DesK adopta una conformación fosfatasa competente, caracterizada por el enrollamiento de las hélices TM formando un 2-HCC que se prolonga hacia el dominio citoplasmático. Los residuos polares del extremo N-terminal de los segmentos TM se encuentran hidratados debido a la apertura del 2-HCC generada por la bisagra formada entre Gly13 y Pro16, y los dominios de unión a ATP (ABDs) interaccionan fuertemente con el dominio de dimerización y fosforilación de histidina (DHp). Frente a una disminución de la temperatura, la membrana pierde fluidez y se ensancha, generando un movimiento de tijera en el N-terminal de los segmentos TM, favoreciendo la deshidratación de los residuos polares. Los segmentos TM sufren un estiramiento debido al cierre del extremo N-terminal y al segmento citoplasmático KERER que permanece anclado en la interface lípido-agua citoplasmática. Este estiramiento promueve la rotación de las hélices que a su vez provoca el desenrollamiento de los segmentos TM y del 2-HCC. El desenrollamiento estaría favorecido por la hidratación de los residuos polares que se orientan hacia el núcleo del CC. Esta rotación se transmite al DHp, que ahora esconde los residuos hidrofóbicos que le permitían interaccionar con los ABDs. Finalmente, los ABDs quedan libres favoreciendo el estado auto-quinasa competente.
Fil: Fil: Saita, Emilio Adolfo. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET); Argentina.
Materia
Histidina Quinasa
Termosensor
Membranas
DesK
Nivel de accesibilidad
acceso abierto
Condiciones de uso
Atribución (by): Se permite cualquier explotación de la obra, incluyendo la explotación con fines co-merciales y la creación de obras derivadas, la distribución de las cuales también está permitida sin nin-guna restricción https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
RepHipUNR (UNR)
Institución
Universidad Nacional de Rosario
OAI Identificador
oai:rephip.unr.edu.ar:2133/13412

id RepHipUNR_2dd81f426185053985852822b2332a3e
oai_identifier_str oai:rephip.unr.edu.ar:2133/13412
network_acronym_str RepHipUNR
repository_id_str 1550
network_name_str RepHipUNR (UNR)
spelling Caracterización estructural y funcional del termosensor DesK de Bacillus subtilisSaita, Emilio AdolfoHistidina QuinasaTermosensorMembranasDesK. subtilis se adapta rápidamente a disminuciones de temperatura mediante un mecanismo denominado vía Des, el cual es controlado por el sistema de dos componentes DesK/DesR. El termosensor DesK es el encargado de detectar cambios en la temperatura ambiental y regular la transcripción del gen des que codifica para una Δ5 acil lípido desaturasa, la cual genera insaturaciones en los ácidos grasos de los fosfolípidos de la membrana plasmática modificando la fluidez de la misma. En este trabajo de tesis nos propusimos estudiar los eventos moleculares que tienen lugar en los segmentos transmembrana (TM) de DesK durante la detección de la señal de temperatura. La estrategia inicial que decidimos aplicar es la marcación de spin sitio-dirigida y posterior medición por resonancia paramagnética electrónica (EPR). Dicha estrategia implica la unión de una sonda de spin a residuos de cisteína ubicados en diferentes posiciones de los segmentos TM, para estudiar la dinámica de los mismos en membranas artificiales. Este procedimiento requiere de la purificación de las proteínas en estudio a homogeneidad. Hasta la escritura de esta tesis, los estudios in vitro de DesK completa requerían de la utilización de un sistema de expresión in vitro. Aunque el sistema libre de células ha demostrado ser adecuado para la expresión de DesK, el mismo es muy costosos para ser usado de forma rutinaria. Por este motivo, en una primera instancia nos enfocamos en desarrollar un protocolo que permitiese purificar DesK a partir de cultivos bacterianos, en concentración y pureza suficientes para estudios biofísicos posteriores a un costo reducido. Con este fin, ensayamos diversas estrategias para la expresión y purificación de DesK, incluyendo diferentes vectores de expresión, medios de cultivo, condiciones de crecimiento para la expresión proteica, detergentes para la solubilización de las proteínas de membrana y diversas técnicas cromatográfícas. En función de los resultados obtenidos planificamos un protocolo que permitirán purificar DesK a homogeneidad en micelas de detergente. Resultados posteriores mostraron que la integración de DesK en liposomas permite incrementar la pureza de la misma, indicando que sería posible realizar la marcación con la sonda de spin de las proteínas purificadas en detergente, y posteriormente reconstituir las mismas en liposomas para las subsiguientes mediciones por EPR. Por otra parte, a partir de un análisis informático de covariancia de residuos identificamos pares de aminoácidos con alta probabilidad de interaccionar, ya sea por su cercanía en la estructura cuaternaria, o a través del esqueleto peptídico de DesK. En función a estos resultados seleccionamos posiciones de los segmentos TM que próximamente se reemplazarán por cisteínas, generando variantes de DesK con mutaciones puntuales, para su posterior marcación con la sonda de spin y mediciones de EPR. Estos experimentos ermitirían obtener información estructural y dinámica de los segmentos TM durante la detección de la señal de temperatura. En base a predicciones de estructura secundaria junto con el análisis de las estructuras cristalográficas de la porción catalítica soluble de DesK (DesKC) en distintos estados funcionales, identificamos un motivo de hélices enrolladas (2-HCC) que conecta el dominio TM sensor y el dominio catalítico soluble. La construcción de dos variantes de DesK en las cuales se estabilizó (DesKSTA) o desestabilizó (DesKDEST) el dominio 2-HCC mediante mutaciones puntuales permitió determinar que este motivo juega un rol importante en la regulación de las actividades catalíticas de DesK. Además, de acuerdo con medidas de actividad in vitro de DesK salvaje y DesKSTA insertadas en liposomas, y a ensayos de dinámica molecular de modelos atómicos de DesK salvaje, DesKDEST y DesKSTA, se propuso que en el estado fosfatasa las hélices del segmento TM5 podrían continuar formando un 2-HCC a través de toda la membrana, y que la hidratación de este motivo podría favorecer la apertura del mismo durante la transición al estado auto-quinasa. Por otra parte, se construyeron modelos del estado fosfatasa y auto-quinasa de una quimera funcional de DesK (MS-DesK), la cual posee un único segmento TM por monómero, generado por la fusión de los 17 residuos N-terminales de DesK a los 14 residuos C-terminales del TM5 de DesK. En función a ensayos de dinámica molecular de estos modelos embebidos en bicapas lipídicas de diferente espesor, se propuso un modelo para la detección y transmisión de la señal de temperatura por parte de MS-DesK. En este modelo, a 37 ºC la membrana se encuentra fluida y delgada, y MS-DesK adopta una conformación fosfatasa competente, caracterizada por el enrollamiento de las hélices TM formando un 2-HCC que se prolonga hacia el dominio citoplasmático. Los residuos polares del extremo N-terminal de los segmentos TM se encuentran hidratados debido a la apertura del 2-HCC generada por la bisagra formada entre Gly13 y Pro16, y los dominios de unión a ATP (ABDs) interaccionan fuertemente con el dominio de dimerización y fosforilación de histidina (DHp). Frente a una disminución de la temperatura, la membrana pierde fluidez y se ensancha, generando un movimiento de tijera en el N-terminal de los segmentos TM, favoreciendo la deshidratación de los residuos polares. Los segmentos TM sufren un estiramiento debido al cierre del extremo N-terminal y al segmento citoplasmático KERER que permanece anclado en la interface lípido-agua citoplasmática. Este estiramiento promueve la rotación de las hélices que a su vez provoca el desenrollamiento de los segmentos TM y del 2-HCC. El desenrollamiento estaría favorecido por la hidratación de los residuos polares que se orientan hacia el núcleo del CC. Esta rotación se transmite al DHp, que ahora esconde los residuos hidrofóbicos que le permitían interaccionar con los ABDs. Finalmente, los ABDs quedan libres favoreciendo el estado auto-quinasa competente.Fil: Fil: Saita, Emilio Adolfo. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET); Argentina.Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas.De Mendoza, DiegoAlbanesi, Daniela2016-03-28info:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06info:ar-repo/semantics/tesisDoctoralapplication/pdfhttp://hdl.handle.net/2133/13412spainfo:eu-repo/semantics/openAccessAtribución (by): Se permite cualquier explotación de la obra, incluyendo la explotación con fines co-merciales y la creación de obras derivadas, la distribución de las cuales también está permitida sin nin-guna restricción https://creativecommons.org/licenses/by/2.5/ar/http://creativecommons.org/licenses/by/2.5/ar/Licencia RepHipreponame:RepHipUNR (UNR)instname:Universidad Nacional de Rosario2025-09-29T13:41:52Zoai:rephip.unr.edu.ar:2133/13412instacron:UNRInstitucionalhttps://rephip.unr.edu.ar/Universidad públicaNo correspondehttps://rephip.unr.edu.ar/oai/requestrephip@unr.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:15502025-09-29 13:41:52.523RepHipUNR (UNR) - Universidad Nacional de Rosariofalse
dc.title.none.fl_str_mv Caracterización estructural y funcional del termosensor DesK de Bacillus subtilis
title Caracterización estructural y funcional del termosensor DesK de Bacillus subtilis
spellingShingle Caracterización estructural y funcional del termosensor DesK de Bacillus subtilis
Saita, Emilio Adolfo
Histidina Quinasa
Termosensor
Membranas
DesK
title_short Caracterización estructural y funcional del termosensor DesK de Bacillus subtilis
title_full Caracterización estructural y funcional del termosensor DesK de Bacillus subtilis
title_fullStr Caracterización estructural y funcional del termosensor DesK de Bacillus subtilis
title_full_unstemmed Caracterización estructural y funcional del termosensor DesK de Bacillus subtilis
title_sort Caracterización estructural y funcional del termosensor DesK de Bacillus subtilis
dc.creator.none.fl_str_mv Saita, Emilio Adolfo
author Saita, Emilio Adolfo
author_facet Saita, Emilio Adolfo
author_role author
dc.contributor.none.fl_str_mv De Mendoza, Diego
Albanesi, Daniela
dc.subject.none.fl_str_mv Histidina Quinasa
Termosensor
Membranas
DesK
topic Histidina Quinasa
Termosensor
Membranas
DesK
dc.description.none.fl_txt_mv . subtilis se adapta rápidamente a disminuciones de temperatura mediante un mecanismo denominado vía Des, el cual es controlado por el sistema de dos componentes DesK/DesR. El termosensor DesK es el encargado de detectar cambios en la temperatura ambiental y regular la transcripción del gen des que codifica para una Δ5 acil lípido desaturasa, la cual genera insaturaciones en los ácidos grasos de los fosfolípidos de la membrana plasmática modificando la fluidez de la misma. En este trabajo de tesis nos propusimos estudiar los eventos moleculares que tienen lugar en los segmentos transmembrana (TM) de DesK durante la detección de la señal de temperatura. La estrategia inicial que decidimos aplicar es la marcación de spin sitio-dirigida y posterior medición por resonancia paramagnética electrónica (EPR). Dicha estrategia implica la unión de una sonda de spin a residuos de cisteína ubicados en diferentes posiciones de los segmentos TM, para estudiar la dinámica de los mismos en membranas artificiales. Este procedimiento requiere de la purificación de las proteínas en estudio a homogeneidad. Hasta la escritura de esta tesis, los estudios in vitro de DesK completa requerían de la utilización de un sistema de expresión in vitro. Aunque el sistema libre de células ha demostrado ser adecuado para la expresión de DesK, el mismo es muy costosos para ser usado de forma rutinaria. Por este motivo, en una primera instancia nos enfocamos en desarrollar un protocolo que permitiese purificar DesK a partir de cultivos bacterianos, en concentración y pureza suficientes para estudios biofísicos posteriores a un costo reducido. Con este fin, ensayamos diversas estrategias para la expresión y purificación de DesK, incluyendo diferentes vectores de expresión, medios de cultivo, condiciones de crecimiento para la expresión proteica, detergentes para la solubilización de las proteínas de membrana y diversas técnicas cromatográfícas. En función de los resultados obtenidos planificamos un protocolo que permitirán purificar DesK a homogeneidad en micelas de detergente. Resultados posteriores mostraron que la integración de DesK en liposomas permite incrementar la pureza de la misma, indicando que sería posible realizar la marcación con la sonda de spin de las proteínas purificadas en detergente, y posteriormente reconstituir las mismas en liposomas para las subsiguientes mediciones por EPR. Por otra parte, a partir de un análisis informático de covariancia de residuos identificamos pares de aminoácidos con alta probabilidad de interaccionar, ya sea por su cercanía en la estructura cuaternaria, o a través del esqueleto peptídico de DesK. En función a estos resultados seleccionamos posiciones de los segmentos TM que próximamente se reemplazarán por cisteínas, generando variantes de DesK con mutaciones puntuales, para su posterior marcación con la sonda de spin y mediciones de EPR. Estos experimentos ermitirían obtener información estructural y dinámica de los segmentos TM durante la detección de la señal de temperatura. En base a predicciones de estructura secundaria junto con el análisis de las estructuras cristalográficas de la porción catalítica soluble de DesK (DesKC) en distintos estados funcionales, identificamos un motivo de hélices enrolladas (2-HCC) que conecta el dominio TM sensor y el dominio catalítico soluble. La construcción de dos variantes de DesK en las cuales se estabilizó (DesKSTA) o desestabilizó (DesKDEST) el dominio 2-HCC mediante mutaciones puntuales permitió determinar que este motivo juega un rol importante en la regulación de las actividades catalíticas de DesK. Además, de acuerdo con medidas de actividad in vitro de DesK salvaje y DesKSTA insertadas en liposomas, y a ensayos de dinámica molecular de modelos atómicos de DesK salvaje, DesKDEST y DesKSTA, se propuso que en el estado fosfatasa las hélices del segmento TM5 podrían continuar formando un 2-HCC a través de toda la membrana, y que la hidratación de este motivo podría favorecer la apertura del mismo durante la transición al estado auto-quinasa. Por otra parte, se construyeron modelos del estado fosfatasa y auto-quinasa de una quimera funcional de DesK (MS-DesK), la cual posee un único segmento TM por monómero, generado por la fusión de los 17 residuos N-terminales de DesK a los 14 residuos C-terminales del TM5 de DesK. En función a ensayos de dinámica molecular de estos modelos embebidos en bicapas lipídicas de diferente espesor, se propuso un modelo para la detección y transmisión de la señal de temperatura por parte de MS-DesK. En este modelo, a 37 ºC la membrana se encuentra fluida y delgada, y MS-DesK adopta una conformación fosfatasa competente, caracterizada por el enrollamiento de las hélices TM formando un 2-HCC que se prolonga hacia el dominio citoplasmático. Los residuos polares del extremo N-terminal de los segmentos TM se encuentran hidratados debido a la apertura del 2-HCC generada por la bisagra formada entre Gly13 y Pro16, y los dominios de unión a ATP (ABDs) interaccionan fuertemente con el dominio de dimerización y fosforilación de histidina (DHp). Frente a una disminución de la temperatura, la membrana pierde fluidez y se ensancha, generando un movimiento de tijera en el N-terminal de los segmentos TM, favoreciendo la deshidratación de los residuos polares. Los segmentos TM sufren un estiramiento debido al cierre del extremo N-terminal y al segmento citoplasmático KERER que permanece anclado en la interface lípido-agua citoplasmática. Este estiramiento promueve la rotación de las hélices que a su vez provoca el desenrollamiento de los segmentos TM y del 2-HCC. El desenrollamiento estaría favorecido por la hidratación de los residuos polares que se orientan hacia el núcleo del CC. Esta rotación se transmite al DHp, que ahora esconde los residuos hidrofóbicos que le permitían interaccionar con los ABDs. Finalmente, los ABDs quedan libres favoreciendo el estado auto-quinasa competente.
Fil: Fil: Saita, Emilio Adolfo. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET); Argentina.
description . subtilis se adapta rápidamente a disminuciones de temperatura mediante un mecanismo denominado vía Des, el cual es controlado por el sistema de dos componentes DesK/DesR. El termosensor DesK es el encargado de detectar cambios en la temperatura ambiental y regular la transcripción del gen des que codifica para una Δ5 acil lípido desaturasa, la cual genera insaturaciones en los ácidos grasos de los fosfolípidos de la membrana plasmática modificando la fluidez de la misma. En este trabajo de tesis nos propusimos estudiar los eventos moleculares que tienen lugar en los segmentos transmembrana (TM) de DesK durante la detección de la señal de temperatura. La estrategia inicial que decidimos aplicar es la marcación de spin sitio-dirigida y posterior medición por resonancia paramagnética electrónica (EPR). Dicha estrategia implica la unión de una sonda de spin a residuos de cisteína ubicados en diferentes posiciones de los segmentos TM, para estudiar la dinámica de los mismos en membranas artificiales. Este procedimiento requiere de la purificación de las proteínas en estudio a homogeneidad. Hasta la escritura de esta tesis, los estudios in vitro de DesK completa requerían de la utilización de un sistema de expresión in vitro. Aunque el sistema libre de células ha demostrado ser adecuado para la expresión de DesK, el mismo es muy costosos para ser usado de forma rutinaria. Por este motivo, en una primera instancia nos enfocamos en desarrollar un protocolo que permitiese purificar DesK a partir de cultivos bacterianos, en concentración y pureza suficientes para estudios biofísicos posteriores a un costo reducido. Con este fin, ensayamos diversas estrategias para la expresión y purificación de DesK, incluyendo diferentes vectores de expresión, medios de cultivo, condiciones de crecimiento para la expresión proteica, detergentes para la solubilización de las proteínas de membrana y diversas técnicas cromatográfícas. En función de los resultados obtenidos planificamos un protocolo que permitirán purificar DesK a homogeneidad en micelas de detergente. Resultados posteriores mostraron que la integración de DesK en liposomas permite incrementar la pureza de la misma, indicando que sería posible realizar la marcación con la sonda de spin de las proteínas purificadas en detergente, y posteriormente reconstituir las mismas en liposomas para las subsiguientes mediciones por EPR. Por otra parte, a partir de un análisis informático de covariancia de residuos identificamos pares de aminoácidos con alta probabilidad de interaccionar, ya sea por su cercanía en la estructura cuaternaria, o a través del esqueleto peptídico de DesK. En función a estos resultados seleccionamos posiciones de los segmentos TM que próximamente se reemplazarán por cisteínas, generando variantes de DesK con mutaciones puntuales, para su posterior marcación con la sonda de spin y mediciones de EPR. Estos experimentos ermitirían obtener información estructural y dinámica de los segmentos TM durante la detección de la señal de temperatura. En base a predicciones de estructura secundaria junto con el análisis de las estructuras cristalográficas de la porción catalítica soluble de DesK (DesKC) en distintos estados funcionales, identificamos un motivo de hélices enrolladas (2-HCC) que conecta el dominio TM sensor y el dominio catalítico soluble. La construcción de dos variantes de DesK en las cuales se estabilizó (DesKSTA) o desestabilizó (DesKDEST) el dominio 2-HCC mediante mutaciones puntuales permitió determinar que este motivo juega un rol importante en la regulación de las actividades catalíticas de DesK. Además, de acuerdo con medidas de actividad in vitro de DesK salvaje y DesKSTA insertadas en liposomas, y a ensayos de dinámica molecular de modelos atómicos de DesK salvaje, DesKDEST y DesKSTA, se propuso que en el estado fosfatasa las hélices del segmento TM5 podrían continuar formando un 2-HCC a través de toda la membrana, y que la hidratación de este motivo podría favorecer la apertura del mismo durante la transición al estado auto-quinasa. Por otra parte, se construyeron modelos del estado fosfatasa y auto-quinasa de una quimera funcional de DesK (MS-DesK), la cual posee un único segmento TM por monómero, generado por la fusión de los 17 residuos N-terminales de DesK a los 14 residuos C-terminales del TM5 de DesK. En función a ensayos de dinámica molecular de estos modelos embebidos en bicapas lipídicas de diferente espesor, se propuso un modelo para la detección y transmisión de la señal de temperatura por parte de MS-DesK. En este modelo, a 37 ºC la membrana se encuentra fluida y delgada, y MS-DesK adopta una conformación fosfatasa competente, caracterizada por el enrollamiento de las hélices TM formando un 2-HCC que se prolonga hacia el dominio citoplasmático. Los residuos polares del extremo N-terminal de los segmentos TM se encuentran hidratados debido a la apertura del 2-HCC generada por la bisagra formada entre Gly13 y Pro16, y los dominios de unión a ATP (ABDs) interaccionan fuertemente con el dominio de dimerización y fosforilación de histidina (DHp). Frente a una disminución de la temperatura, la membrana pierde fluidez y se ensancha, generando un movimiento de tijera en el N-terminal de los segmentos TM, favoreciendo la deshidratación de los residuos polares. Los segmentos TM sufren un estiramiento debido al cierre del extremo N-terminal y al segmento citoplasmático KERER que permanece anclado en la interface lípido-agua citoplasmática. Este estiramiento promueve la rotación de las hélices que a su vez provoca el desenrollamiento de los segmentos TM y del 2-HCC. El desenrollamiento estaría favorecido por la hidratación de los residuos polares que se orientan hacia el núcleo del CC. Esta rotación se transmite al DHp, que ahora esconde los residuos hidrofóbicos que le permitían interaccionar con los ABDs. Finalmente, los ABDs quedan libres favoreciendo el estado auto-quinasa competente.
publishDate 2016
dc.date.none.fl_str_mv 2016-03-28
dc.type.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
info:eu-repo/semantics/acceptedVersion
http://purl.org/coar/resource_type/c_db06
info:ar-repo/semantics/tesisDoctoral
format doctoralThesis
status_str acceptedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/2133/13412
url http://hdl.handle.net/2133/13412
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
Atribución (by): Se permite cualquier explotación de la obra, incluyendo la explotación con fines co-merciales y la creación de obras derivadas, la distribución de las cuales también está permitida sin nin-guna restricción https://creativecommons.org/licenses/by/2.5/ar/
http://creativecommons.org/licenses/by/2.5/ar/
Licencia RepHip
eu_rights_str_mv openAccess
rights_invalid_str_mv Atribución (by): Se permite cualquier explotación de la obra, incluyendo la explotación con fines co-merciales y la creación de obras derivadas, la distribución de las cuales también está permitida sin nin-guna restricción https://creativecommons.org/licenses/by/2.5/ar/
http://creativecommons.org/licenses/by/2.5/ar/
Licencia RepHip
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas.
publisher.none.fl_str_mv Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas.
dc.source.none.fl_str_mv reponame:RepHipUNR (UNR)
instname:Universidad Nacional de Rosario
reponame_str RepHipUNR (UNR)
collection RepHipUNR (UNR)
instname_str Universidad Nacional de Rosario
repository.name.fl_str_mv RepHipUNR (UNR) - Universidad Nacional de Rosario
repository.mail.fl_str_mv rephip@unr.edu.ar
_version_ 1844618792832860160
score 13.070432