Classification of organic olives based on chemometric analysis of elemental data

Autores
Hidalgo, Melisa Jazmín; Pozzi, María T.; Furlong, Octavio Javier; Marchevsky, Eduardo Jorge; Pellerano, Roberto Gerardo
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Fil: Hidalgo, Melisa Jazmín. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura; Argentina.
Fil: Hidalgo, Melisa Jazmín. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina.
Fil: Pozzi, María T. Universidad Nacional del Catamarca. Facultad de Ciencias Exactas y Naturales y Agrimensura; Argentina.
Fil: Furlong, Octavio Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Física Aplicada; Argentina.
Fil: Marchevsky, Eduardo J. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química San Luis; Argentina.
Fil: Pellerano, Roberto Gerardo. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura; Argentina.
Fil: Pellerano, Roberto Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina.
The aim of this study was to discriminate organic from conventional olive samples based on the levels of macro and trace elements, combined with chemometric techniques. Ten elements (Na, K, Ca, Fe, Mg, Cu, Zn, Se, S and P) were determined in organic (n=30) and conventional (n=30) olive samples by inductively coupled plasma optical emission spectrometry analysis (ICP-OES). The classification of samples was performed by using a wellknown chemometric techniques, linear discriminant analysis (LDA), partial least square-discriminant analysis (PLS-DA), support vector machine-discriminant analysis (SVM-DA), k-nearest neighbors (k-NN) and random forest (RF). The k-NN technique showed the best performance in discriminating organic from conventional samples (Accuracy: 94%) using all chemical variables. After variable reduction, an accuracy of 83% was found by using only the elements K and P. The use of a fingerprint based on multielemental levels associated with classification chemometric techniques may be used as a simple method to authenticate organic olive samples.
Fuente
Microchemical Journal, 2018, vol. 142, p. 30-35.
Materia
Olive
Multivariate classification
ICP-OES
Chemometrics
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE)
Institución
Universidad Nacional del Nordeste
OAI Identificador
oai:repositorio.unne.edu.ar:123456789/27961

id RIUNNE_3ddecad71accef0d4390fdcf32c6d5d7
oai_identifier_str oai:repositorio.unne.edu.ar:123456789/27961
network_acronym_str RIUNNE
repository_id_str 4871
network_name_str Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE)
spelling Classification of organic olives based on chemometric analysis of elemental dataHidalgo, Melisa JazmínPozzi, María T.Furlong, Octavio JavierMarchevsky, Eduardo JorgePellerano, Roberto GerardoOliveMultivariate classificationICP-OESChemometricsFil: Hidalgo, Melisa Jazmín. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura; Argentina.Fil: Hidalgo, Melisa Jazmín. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina.Fil: Pozzi, María T. Universidad Nacional del Catamarca. Facultad de Ciencias Exactas y Naturales y Agrimensura; Argentina.Fil: Furlong, Octavio Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Física Aplicada; Argentina.Fil: Marchevsky, Eduardo J. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química San Luis; Argentina.Fil: Pellerano, Roberto Gerardo. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura; Argentina.Fil: Pellerano, Roberto Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina.The aim of this study was to discriminate organic from conventional olive samples based on the levels of macro and trace elements, combined with chemometric techniques. Ten elements (Na, K, Ca, Fe, Mg, Cu, Zn, Se, S and P) were determined in organic (n=30) and conventional (n=30) olive samples by inductively coupled plasma optical emission spectrometry analysis (ICP-OES). The classification of samples was performed by using a wellknown chemometric techniques, linear discriminant analysis (LDA), partial least square-discriminant analysis (PLS-DA), support vector machine-discriminant analysis (SVM-DA), k-nearest neighbors (k-NN) and random forest (RF). The k-NN technique showed the best performance in discriminating organic from conventional samples (Accuracy: 94%) using all chemical variables. After variable reduction, an accuracy of 83% was found by using only the elements K and P. The use of a fingerprint based on multielemental levels associated with classification chemometric techniques may be used as a simple method to authenticate organic olive samples.Elsevier2018info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfHidalgo, Melisa Jazmin., et al., 2018. Classification of organic olives based on chemometric analysis of elemental data. Microchemical Journal. Amsterdam: Elsevier, vol. 142, p. 30-35. ISSN 0026-265X.0026-265Xhttp://repositorio.unne.edu.ar/handle/123456789/27961Microchemical Journal, 2018, vol. 142, p. 30-35.reponame:Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE)instname:Universidad Nacional del Nordesteenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/ar/Atribución-NoComercial-SinDerivadas 2.5 Argentina2025-10-16T10:07:39Zoai:repositorio.unne.edu.ar:123456789/27961instacron:UNNEInstitucionalhttp://repositorio.unne.edu.ar/Universidad públicaNo correspondehttp://repositorio.unne.edu.ar/oaiososa@bib.unne.edu.ar;sergio.alegria@unne.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:48712025-10-16 10:07:39.94Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE) - Universidad Nacional del Nordestefalse
dc.title.none.fl_str_mv Classification of organic olives based on chemometric analysis of elemental data
title Classification of organic olives based on chemometric analysis of elemental data
spellingShingle Classification of organic olives based on chemometric analysis of elemental data
Hidalgo, Melisa Jazmín
Olive
Multivariate classification
ICP-OES
Chemometrics
title_short Classification of organic olives based on chemometric analysis of elemental data
title_full Classification of organic olives based on chemometric analysis of elemental data
title_fullStr Classification of organic olives based on chemometric analysis of elemental data
title_full_unstemmed Classification of organic olives based on chemometric analysis of elemental data
title_sort Classification of organic olives based on chemometric analysis of elemental data
dc.creator.none.fl_str_mv Hidalgo, Melisa Jazmín
Pozzi, María T.
Furlong, Octavio Javier
Marchevsky, Eduardo Jorge
Pellerano, Roberto Gerardo
author Hidalgo, Melisa Jazmín
author_facet Hidalgo, Melisa Jazmín
Pozzi, María T.
Furlong, Octavio Javier
Marchevsky, Eduardo Jorge
Pellerano, Roberto Gerardo
author_role author
author2 Pozzi, María T.
Furlong, Octavio Javier
Marchevsky, Eduardo Jorge
Pellerano, Roberto Gerardo
author2_role author
author
author
author
dc.subject.none.fl_str_mv Olive
Multivariate classification
ICP-OES
Chemometrics
topic Olive
Multivariate classification
ICP-OES
Chemometrics
dc.description.none.fl_txt_mv Fil: Hidalgo, Melisa Jazmín. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura; Argentina.
Fil: Hidalgo, Melisa Jazmín. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina.
Fil: Pozzi, María T. Universidad Nacional del Catamarca. Facultad de Ciencias Exactas y Naturales y Agrimensura; Argentina.
Fil: Furlong, Octavio Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Física Aplicada; Argentina.
Fil: Marchevsky, Eduardo J. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química San Luis; Argentina.
Fil: Pellerano, Roberto Gerardo. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura; Argentina.
Fil: Pellerano, Roberto Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina.
The aim of this study was to discriminate organic from conventional olive samples based on the levels of macro and trace elements, combined with chemometric techniques. Ten elements (Na, K, Ca, Fe, Mg, Cu, Zn, Se, S and P) were determined in organic (n=30) and conventional (n=30) olive samples by inductively coupled plasma optical emission spectrometry analysis (ICP-OES). The classification of samples was performed by using a wellknown chemometric techniques, linear discriminant analysis (LDA), partial least square-discriminant analysis (PLS-DA), support vector machine-discriminant analysis (SVM-DA), k-nearest neighbors (k-NN) and random forest (RF). The k-NN technique showed the best performance in discriminating organic from conventional samples (Accuracy: 94%) using all chemical variables. After variable reduction, an accuracy of 83% was found by using only the elements K and P. The use of a fingerprint based on multielemental levels associated with classification chemometric techniques may be used as a simple method to authenticate organic olive samples.
description Fil: Hidalgo, Melisa Jazmín. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura; Argentina.
publishDate 2018
dc.date.none.fl_str_mv 2018
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv Hidalgo, Melisa Jazmin., et al., 2018. Classification of organic olives based on chemometric analysis of elemental data. Microchemical Journal. Amsterdam: Elsevier, vol. 142, p. 30-35. ISSN 0026-265X.
0026-265X
http://repositorio.unne.edu.ar/handle/123456789/27961
identifier_str_mv Hidalgo, Melisa Jazmin., et al., 2018. Classification of organic olives based on chemometric analysis of elemental data. Microchemical Journal. Amsterdam: Elsevier, vol. 142, p. 30-35. ISSN 0026-265X.
0026-265X
url http://repositorio.unne.edu.ar/handle/123456789/27961
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Atribución-NoComercial-SinDerivadas 2.5 Argentina
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Atribución-NoComercial-SinDerivadas 2.5 Argentina
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv Microchemical Journal, 2018, vol. 142, p. 30-35.
reponame:Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE)
instname:Universidad Nacional del Nordeste
reponame_str Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE)
collection Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE)
instname_str Universidad Nacional del Nordeste
repository.name.fl_str_mv Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE) - Universidad Nacional del Nordeste
repository.mail.fl_str_mv ososa@bib.unne.edu.ar;sergio.alegria@unne.edu.ar
_version_ 1846146010447872000
score 12.712165