Classification of organic olives based on chemometric analysis of elemental data
- Autores
- Hidalgo, Melisa Jazmín; Pozzi, María T.; Furlong, Octavio Javier; Marchevsky, Eduardo Jorge; Pellerano, Roberto Gerardo
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Fil: Hidalgo, Melisa Jazmín. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura; Argentina.
Fil: Hidalgo, Melisa Jazmín. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina.
Fil: Pozzi, María T. Universidad Nacional del Catamarca. Facultad de Ciencias Exactas y Naturales y Agrimensura; Argentina.
Fil: Furlong, Octavio Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Física Aplicada; Argentina.
Fil: Marchevsky, Eduardo J. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química San Luis; Argentina.
Fil: Pellerano, Roberto Gerardo. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura; Argentina.
Fil: Pellerano, Roberto Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina.
The aim of this study was to discriminate organic from conventional olive samples based on the levels of macro and trace elements, combined with chemometric techniques. Ten elements (Na, K, Ca, Fe, Mg, Cu, Zn, Se, S and P) were determined in organic (n=30) and conventional (n=30) olive samples by inductively coupled plasma optical emission spectrometry analysis (ICP-OES). The classification of samples was performed by using a wellknown chemometric techniques, linear discriminant analysis (LDA), partial least square-discriminant analysis (PLS-DA), support vector machine-discriminant analysis (SVM-DA), k-nearest neighbors (k-NN) and random forest (RF). The k-NN technique showed the best performance in discriminating organic from conventional samples (Accuracy: 94%) using all chemical variables. After variable reduction, an accuracy of 83% was found by using only the elements K and P. The use of a fingerprint based on multielemental levels associated with classification chemometric techniques may be used as a simple method to authenticate organic olive samples. - Fuente
- Microchemical Journal, 2018, vol. 142, p. 30-35.
- Materia
-
Olive
Multivariate classification
ICP-OES
Chemometrics - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional del Nordeste
- OAI Identificador
- oai:repositorio.unne.edu.ar:123456789/27961
Ver los metadatos del registro completo
id |
RIUNNE_3ddecad71accef0d4390fdcf32c6d5d7 |
---|---|
oai_identifier_str |
oai:repositorio.unne.edu.ar:123456789/27961 |
network_acronym_str |
RIUNNE |
repository_id_str |
4871 |
network_name_str |
Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE) |
spelling |
Classification of organic olives based on chemometric analysis of elemental dataHidalgo, Melisa JazmínPozzi, María T.Furlong, Octavio JavierMarchevsky, Eduardo JorgePellerano, Roberto GerardoOliveMultivariate classificationICP-OESChemometricsFil: Hidalgo, Melisa Jazmín. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura; Argentina.Fil: Hidalgo, Melisa Jazmín. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina.Fil: Pozzi, María T. Universidad Nacional del Catamarca. Facultad de Ciencias Exactas y Naturales y Agrimensura; Argentina.Fil: Furlong, Octavio Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Física Aplicada; Argentina.Fil: Marchevsky, Eduardo J. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química San Luis; Argentina.Fil: Pellerano, Roberto Gerardo. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura; Argentina.Fil: Pellerano, Roberto Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina.The aim of this study was to discriminate organic from conventional olive samples based on the levels of macro and trace elements, combined with chemometric techniques. Ten elements (Na, K, Ca, Fe, Mg, Cu, Zn, Se, S and P) were determined in organic (n=30) and conventional (n=30) olive samples by inductively coupled plasma optical emission spectrometry analysis (ICP-OES). The classification of samples was performed by using a wellknown chemometric techniques, linear discriminant analysis (LDA), partial least square-discriminant analysis (PLS-DA), support vector machine-discriminant analysis (SVM-DA), k-nearest neighbors (k-NN) and random forest (RF). The k-NN technique showed the best performance in discriminating organic from conventional samples (Accuracy: 94%) using all chemical variables. After variable reduction, an accuracy of 83% was found by using only the elements K and P. The use of a fingerprint based on multielemental levels associated with classification chemometric techniques may be used as a simple method to authenticate organic olive samples.Elsevier2018info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfHidalgo, Melisa Jazmin., et al., 2018. Classification of organic olives based on chemometric analysis of elemental data. Microchemical Journal. Amsterdam: Elsevier, vol. 142, p. 30-35. ISSN 0026-265X.0026-265Xhttp://repositorio.unne.edu.ar/handle/123456789/27961Microchemical Journal, 2018, vol. 142, p. 30-35.reponame:Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE)instname:Universidad Nacional del Nordesteenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/ar/Atribución-NoComercial-SinDerivadas 2.5 Argentina2025-10-16T10:07:39Zoai:repositorio.unne.edu.ar:123456789/27961instacron:UNNEInstitucionalhttp://repositorio.unne.edu.ar/Universidad públicaNo correspondehttp://repositorio.unne.edu.ar/oaiososa@bib.unne.edu.ar;sergio.alegria@unne.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:48712025-10-16 10:07:39.94Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE) - Universidad Nacional del Nordestefalse |
dc.title.none.fl_str_mv |
Classification of organic olives based on chemometric analysis of elemental data |
title |
Classification of organic olives based on chemometric analysis of elemental data |
spellingShingle |
Classification of organic olives based on chemometric analysis of elemental data Hidalgo, Melisa Jazmín Olive Multivariate classification ICP-OES Chemometrics |
title_short |
Classification of organic olives based on chemometric analysis of elemental data |
title_full |
Classification of organic olives based on chemometric analysis of elemental data |
title_fullStr |
Classification of organic olives based on chemometric analysis of elemental data |
title_full_unstemmed |
Classification of organic olives based on chemometric analysis of elemental data |
title_sort |
Classification of organic olives based on chemometric analysis of elemental data |
dc.creator.none.fl_str_mv |
Hidalgo, Melisa Jazmín Pozzi, María T. Furlong, Octavio Javier Marchevsky, Eduardo Jorge Pellerano, Roberto Gerardo |
author |
Hidalgo, Melisa Jazmín |
author_facet |
Hidalgo, Melisa Jazmín Pozzi, María T. Furlong, Octavio Javier Marchevsky, Eduardo Jorge Pellerano, Roberto Gerardo |
author_role |
author |
author2 |
Pozzi, María T. Furlong, Octavio Javier Marchevsky, Eduardo Jorge Pellerano, Roberto Gerardo |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Olive Multivariate classification ICP-OES Chemometrics |
topic |
Olive Multivariate classification ICP-OES Chemometrics |
dc.description.none.fl_txt_mv |
Fil: Hidalgo, Melisa Jazmín. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura; Argentina. Fil: Hidalgo, Melisa Jazmín. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina. Fil: Pozzi, María T. Universidad Nacional del Catamarca. Facultad de Ciencias Exactas y Naturales y Agrimensura; Argentina. Fil: Furlong, Octavio Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Física Aplicada; Argentina. Fil: Marchevsky, Eduardo J. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química San Luis; Argentina. Fil: Pellerano, Roberto Gerardo. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura; Argentina. Fil: Pellerano, Roberto Gerardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química Básica y Aplicada del Nordeste Argentino; Argentina. The aim of this study was to discriminate organic from conventional olive samples based on the levels of macro and trace elements, combined with chemometric techniques. Ten elements (Na, K, Ca, Fe, Mg, Cu, Zn, Se, S and P) were determined in organic (n=30) and conventional (n=30) olive samples by inductively coupled plasma optical emission spectrometry analysis (ICP-OES). The classification of samples was performed by using a wellknown chemometric techniques, linear discriminant analysis (LDA), partial least square-discriminant analysis (PLS-DA), support vector machine-discriminant analysis (SVM-DA), k-nearest neighbors (k-NN) and random forest (RF). The k-NN technique showed the best performance in discriminating organic from conventional samples (Accuracy: 94%) using all chemical variables. After variable reduction, an accuracy of 83% was found by using only the elements K and P. The use of a fingerprint based on multielemental levels associated with classification chemometric techniques may be used as a simple method to authenticate organic olive samples. |
description |
Fil: Hidalgo, Melisa Jazmín. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura; Argentina. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
Hidalgo, Melisa Jazmin., et al., 2018. Classification of organic olives based on chemometric analysis of elemental data. Microchemical Journal. Amsterdam: Elsevier, vol. 142, p. 30-35. ISSN 0026-265X. 0026-265X http://repositorio.unne.edu.ar/handle/123456789/27961 |
identifier_str_mv |
Hidalgo, Melisa Jazmin., et al., 2018. Classification of organic olives based on chemometric analysis of elemental data. Microchemical Journal. Amsterdam: Elsevier, vol. 142, p. 30-35. ISSN 0026-265X. 0026-265X |
url |
http://repositorio.unne.edu.ar/handle/123456789/27961 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-nd/2.5/ar/ Atribución-NoComercial-SinDerivadas 2.5 Argentina |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/ar/ Atribución-NoComercial-SinDerivadas 2.5 Argentina |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
Microchemical Journal, 2018, vol. 142, p. 30-35. reponame:Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE) instname:Universidad Nacional del Nordeste |
reponame_str |
Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE) |
collection |
Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE) |
instname_str |
Universidad Nacional del Nordeste |
repository.name.fl_str_mv |
Repositorio Institucional de la Universidad Nacional del Nordeste (UNNE) - Universidad Nacional del Nordeste |
repository.mail.fl_str_mv |
ososa@bib.unne.edu.ar;sergio.alegria@unne.edu.ar |
_version_ |
1846146010447872000 |
score |
12.712165 |