Changing dynamics : time-varying autoregressive models using generalized additive modeling
- Autores
- Bringmann, Laura F.; Vigo, Daniel Eduardo; Borsboom, Denny; Hamaker, Ellen L.; Aubert, André E.; Tuerlinckx, Francis
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión aceptada
- Descripción
- Fil: Bringmann, Laura F. University of Leuven. Department Quantitative Psychology and Individual Differences; Bélgica
Fil: Hamaker, Ellen L. University of Utrecht; Países Bajos
Fil: Vigo, Daniel Eduardo. Pontificia Universidad Católica Argentina. Facultad de Ciencias Médicas. Instituto de Investigaciones Biomédicas; Argentina
Fil: Vigo, Daniel Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Vigo, Daniel Eduardo. University of Leuven; Bélgica
Fil: Aubert, André E. University of Leuven; Bélgica
Fil: Borsboom, Denny. University of Amsterdam; Países Bajos
Fil: Tuerlinckx, Francis. University of Leuven; Bélgica
Abstract: In psychology, the use of intensive longitudinal data has steeply increased during the past decade. As a result, studying temporal dependencies in such data with autoregressive modeling is becoming common practice. However, standard autoregressive models are often suboptimal as they assume that parameters are time-invariant. This is problematic if changing dynamics (e.g., changes in the temporal dependency of a process) govern the time series. Often a change in the process, such as emotional well-being during therapy, is the very reason why it is interesting and important to study psychological dynamics. As a result, there is a need for an easily applicable method for studying such nonstationary processes that result from changing dynamics. In this article we present such a tool: the semiparametric TV-AR model. We show with a simulation study and an empirical application that the TV-AR model can approximate nonstationary processes well if there are at least 100 time points available and no unknown abrupt changes in the data. Notably, no prior knowledge of the processes that drive change in the dynamic structure is necessary. We conclude that the TV-AR model has significant potential for studying changing dynamics in psychology. - Fuente
- Psychological Methods. 2017, 22 (3)
- Materia
-
SERIES TEMPORALES
METODOS ESTADISTICOS
REGRESION LINEAL
PSICOLOGIA
MODELOS MATEMATICOS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Pontificia Universidad Católica Argentina
- OAI Identificador
- oai:ucacris:123456789/10326
Ver los metadatos del registro completo
id |
RIUCA_e25f8ffe2885e907a54a5aaad01c13f7 |
---|---|
oai_identifier_str |
oai:ucacris:123456789/10326 |
network_acronym_str |
RIUCA |
repository_id_str |
2585 |
network_name_str |
Repositorio Institucional (UCA) |
spelling |
Changing dynamics : time-varying autoregressive models using generalized additive modelingBringmann, Laura F.Vigo, Daniel EduardoBorsboom, DennyHamaker, Ellen L.Aubert, André E.Tuerlinckx, FrancisSERIES TEMPORALESMETODOS ESTADISTICOSREGRESION LINEALPSICOLOGIAMODELOS MATEMATICOSFil: Bringmann, Laura F. University of Leuven. Department Quantitative Psychology and Individual Differences; BélgicaFil: Hamaker, Ellen L. University of Utrecht; Países BajosFil: Vigo, Daniel Eduardo. Pontificia Universidad Católica Argentina. Facultad de Ciencias Médicas. Instituto de Investigaciones Biomédicas; ArgentinaFil: Vigo, Daniel Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Vigo, Daniel Eduardo. University of Leuven; BélgicaFil: Aubert, André E. University of Leuven; BélgicaFil: Borsboom, Denny. University of Amsterdam; Países BajosFil: Tuerlinckx, Francis. University of Leuven; BélgicaAbstract: In psychology, the use of intensive longitudinal data has steeply increased during the past decade. As a result, studying temporal dependencies in such data with autoregressive modeling is becoming common practice. However, standard autoregressive models are often suboptimal as they assume that parameters are time-invariant. This is problematic if changing dynamics (e.g., changes in the temporal dependency of a process) govern the time series. Often a change in the process, such as emotional well-being during therapy, is the very reason why it is interesting and important to study psychological dynamics. As a result, there is a need for an easily applicable method for studying such nonstationary processes that result from changing dynamics. In this article we present such a tool: the semiparametric TV-AR model. We show with a simulation study and an empirical application that the TV-AR model can approximate nonstationary processes well if there are at least 100 time points available and no unknown abrupt changes in the data. Notably, no prior knowledge of the processes that drive change in the dynamic structure is necessary. We conclude that the TV-AR model has significant potential for studying changing dynamics in psychology.American Psychological Association2017info:eu-repo/semantics/articleinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttps://repositorio.uca.edu.ar/handle/123456789/103261082-989X (impreso)1939-1463 (online)10.1037/met0000085Bringmann, L. F., et al. Changing dynamics : time-varying autoregressive models using generalized additive modeling [en línea]. Postprint de artículo publicado en Psychological Methods. 2017, 22 (3). doi:10.1037/met0000085. Disponible en: https://repositorio.uca.edu.ar/handle/123456789/10326Psychological Methods. 2017, 22 (3)reponame:Repositorio Institucional (UCA)instname:Pontificia Universidad Católica Argentinaenginfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/2025-07-03T10:57:27Zoai:ucacris:123456789/10326instacron:UCAInstitucionalhttps://repositorio.uca.edu.ar/Universidad privadaNo correspondehttps://repositorio.uca.edu.ar/oaiclaudia_fernandez@uca.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:25852025-07-03 10:57:27.657Repositorio Institucional (UCA) - Pontificia Universidad Católica Argentinafalse |
dc.title.none.fl_str_mv |
Changing dynamics : time-varying autoregressive models using generalized additive modeling |
title |
Changing dynamics : time-varying autoregressive models using generalized additive modeling |
spellingShingle |
Changing dynamics : time-varying autoregressive models using generalized additive modeling Bringmann, Laura F. SERIES TEMPORALES METODOS ESTADISTICOS REGRESION LINEAL PSICOLOGIA MODELOS MATEMATICOS |
title_short |
Changing dynamics : time-varying autoregressive models using generalized additive modeling |
title_full |
Changing dynamics : time-varying autoregressive models using generalized additive modeling |
title_fullStr |
Changing dynamics : time-varying autoregressive models using generalized additive modeling |
title_full_unstemmed |
Changing dynamics : time-varying autoregressive models using generalized additive modeling |
title_sort |
Changing dynamics : time-varying autoregressive models using generalized additive modeling |
dc.creator.none.fl_str_mv |
Bringmann, Laura F. Vigo, Daniel Eduardo Borsboom, Denny Hamaker, Ellen L. Aubert, André E. Tuerlinckx, Francis |
author |
Bringmann, Laura F. |
author_facet |
Bringmann, Laura F. Vigo, Daniel Eduardo Borsboom, Denny Hamaker, Ellen L. Aubert, André E. Tuerlinckx, Francis |
author_role |
author |
author2 |
Vigo, Daniel Eduardo Borsboom, Denny Hamaker, Ellen L. Aubert, André E. Tuerlinckx, Francis |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
SERIES TEMPORALES METODOS ESTADISTICOS REGRESION LINEAL PSICOLOGIA MODELOS MATEMATICOS |
topic |
SERIES TEMPORALES METODOS ESTADISTICOS REGRESION LINEAL PSICOLOGIA MODELOS MATEMATICOS |
dc.description.none.fl_txt_mv |
Fil: Bringmann, Laura F. University of Leuven. Department Quantitative Psychology and Individual Differences; Bélgica Fil: Hamaker, Ellen L. University of Utrecht; Países Bajos Fil: Vigo, Daniel Eduardo. Pontificia Universidad Católica Argentina. Facultad de Ciencias Médicas. Instituto de Investigaciones Biomédicas; Argentina Fil: Vigo, Daniel Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Vigo, Daniel Eduardo. University of Leuven; Bélgica Fil: Aubert, André E. University of Leuven; Bélgica Fil: Borsboom, Denny. University of Amsterdam; Países Bajos Fil: Tuerlinckx, Francis. University of Leuven; Bélgica Abstract: In psychology, the use of intensive longitudinal data has steeply increased during the past decade. As a result, studying temporal dependencies in such data with autoregressive modeling is becoming common practice. However, standard autoregressive models are often suboptimal as they assume that parameters are time-invariant. This is problematic if changing dynamics (e.g., changes in the temporal dependency of a process) govern the time series. Often a change in the process, such as emotional well-being during therapy, is the very reason why it is interesting and important to study psychological dynamics. As a result, there is a need for an easily applicable method for studying such nonstationary processes that result from changing dynamics. In this article we present such a tool: the semiparametric TV-AR model. We show with a simulation study and an empirical application that the TV-AR model can approximate nonstationary processes well if there are at least 100 time points available and no unknown abrupt changes in the data. Notably, no prior knowledge of the processes that drive change in the dynamic structure is necessary. We conclude that the TV-AR model has significant potential for studying changing dynamics in psychology. |
description |
Fil: Bringmann, Laura F. University of Leuven. Department Quantitative Psychology and Individual Differences; Bélgica |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/acceptedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
acceptedVersion |
dc.identifier.none.fl_str_mv |
https://repositorio.uca.edu.ar/handle/123456789/10326 1082-989X (impreso) 1939-1463 (online) 10.1037/met0000085 Bringmann, L. F., et al. Changing dynamics : time-varying autoregressive models using generalized additive modeling [en línea]. Postprint de artículo publicado en Psychological Methods. 2017, 22 (3). doi:10.1037/met0000085. Disponible en: https://repositorio.uca.edu.ar/handle/123456789/10326 |
url |
https://repositorio.uca.edu.ar/handle/123456789/10326 |
identifier_str_mv |
1082-989X (impreso) 1939-1463 (online) 10.1037/met0000085 Bringmann, L. F., et al. Changing dynamics : time-varying autoregressive models using generalized additive modeling [en línea]. Postprint de artículo publicado en Psychological Methods. 2017, 22 (3). doi:10.1037/met0000085. Disponible en: https://repositorio.uca.edu.ar/handle/123456789/10326 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
American Psychological Association |
publisher.none.fl_str_mv |
American Psychological Association |
dc.source.none.fl_str_mv |
Psychological Methods. 2017, 22 (3) reponame:Repositorio Institucional (UCA) instname:Pontificia Universidad Católica Argentina |
reponame_str |
Repositorio Institucional (UCA) |
collection |
Repositorio Institucional (UCA) |
instname_str |
Pontificia Universidad Católica Argentina |
repository.name.fl_str_mv |
Repositorio Institucional (UCA) - Pontificia Universidad Católica Argentina |
repository.mail.fl_str_mv |
claudia_fernandez@uca.edu.ar |
_version_ |
1836638352104751104 |
score |
13.13397 |