Changing dynamics : time-varying autoregressive models using generalized additive modeling

Autores
Bringmann, Laura F.; Vigo, Daniel Eduardo; Borsboom, Denny; Hamaker, Ellen L.; Aubert, André E.; Tuerlinckx, Francis
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión aceptada
Descripción
Fil: Bringmann, Laura F. University of Leuven. Department Quantitative Psychology and Individual Differences; Bélgica
Fil: Hamaker, Ellen L. University of Utrecht; Países Bajos
Fil: Vigo, Daniel Eduardo. Pontificia Universidad Católica Argentina. Facultad de Ciencias Médicas. Instituto de Investigaciones Biomédicas; Argentina
Fil: Vigo, Daniel Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Vigo, Daniel Eduardo. University of Leuven; Bélgica
Fil: Aubert, André E. University of Leuven; Bélgica
Fil: Borsboom, Denny. University of Amsterdam; Países Bajos
Fil: Tuerlinckx, Francis. University of Leuven; Bélgica
Abstract: In psychology, the use of intensive longitudinal data has steeply increased during the past decade. As a result, studying temporal dependencies in such data with autoregressive modeling is becoming common practice. However, standard autoregressive models are often suboptimal as they assume that parameters are time-invariant. This is problematic if changing dynamics (e.g., changes in the temporal dependency of a process) govern the time series. Often a change in the process, such as emotional well-being during therapy, is the very reason why it is interesting and important to study psychological dynamics. As a result, there is a need for an easily applicable method for studying such nonstationary processes that result from changing dynamics. In this article we present such a tool: the semiparametric TV-AR model. We show with a simulation study and an empirical application that the TV-AR model can approximate nonstationary processes well if there are at least 100 time points available and no unknown abrupt changes in the data. Notably, no prior knowledge of the processes that drive change in the dynamic structure is necessary. We conclude that the TV-AR model has significant potential for studying changing dynamics in psychology.
Fuente
Psychological Methods. 2017, 22 (3)
Materia
SERIES TEMPORALES
METODOS ESTADISTICOS
REGRESION LINEAL
PSICOLOGIA
MODELOS MATEMATICOS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
Repositorio Institucional (UCA)
Institución
Pontificia Universidad Católica Argentina
OAI Identificador
oai:ucacris:123456789/10326

id RIUCA_e25f8ffe2885e907a54a5aaad01c13f7
oai_identifier_str oai:ucacris:123456789/10326
network_acronym_str RIUCA
repository_id_str 2585
network_name_str Repositorio Institucional (UCA)
spelling Changing dynamics : time-varying autoregressive models using generalized additive modelingBringmann, Laura F.Vigo, Daniel EduardoBorsboom, DennyHamaker, Ellen L.Aubert, André E.Tuerlinckx, FrancisSERIES TEMPORALESMETODOS ESTADISTICOSREGRESION LINEALPSICOLOGIAMODELOS MATEMATICOSFil: Bringmann, Laura F. University of Leuven. Department Quantitative Psychology and Individual Differences; BélgicaFil: Hamaker, Ellen L. University of Utrecht; Países BajosFil: Vigo, Daniel Eduardo. Pontificia Universidad Católica Argentina. Facultad de Ciencias Médicas. Instituto de Investigaciones Biomédicas; ArgentinaFil: Vigo, Daniel Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Vigo, Daniel Eduardo. University of Leuven; BélgicaFil: Aubert, André E. University of Leuven; BélgicaFil: Borsboom, Denny. University of Amsterdam; Países BajosFil: Tuerlinckx, Francis. University of Leuven; BélgicaAbstract: In psychology, the use of intensive longitudinal data has steeply increased during the past decade. As a result, studying temporal dependencies in such data with autoregressive modeling is becoming common practice. However, standard autoregressive models are often suboptimal as they assume that parameters are time-invariant. This is problematic if changing dynamics (e.g., changes in the temporal dependency of a process) govern the time series. Often a change in the process, such as emotional well-being during therapy, is the very reason why it is interesting and important to study psychological dynamics. As a result, there is a need for an easily applicable method for studying such nonstationary processes that result from changing dynamics. In this article we present such a tool: the semiparametric TV-AR model. We show with a simulation study and an empirical application that the TV-AR model can approximate nonstationary processes well if there are at least 100 time points available and no unknown abrupt changes in the data. Notably, no prior knowledge of the processes that drive change in the dynamic structure is necessary. We conclude that the TV-AR model has significant potential for studying changing dynamics in psychology.American Psychological Association2017info:eu-repo/semantics/articleinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttps://repositorio.uca.edu.ar/handle/123456789/103261082-989X (impreso)1939-1463 (online)10.1037/met0000085Bringmann, L. F., et al. Changing dynamics : time-varying autoregressive models using generalized additive modeling [en línea]. Postprint de artículo publicado en Psychological Methods. 2017, 22 (3). doi:10.1037/met0000085. Disponible en: https://repositorio.uca.edu.ar/handle/123456789/10326Psychological Methods. 2017, 22 (3)reponame:Repositorio Institucional (UCA)instname:Pontificia Universidad Católica Argentinaenginfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/2025-07-03T10:57:27Zoai:ucacris:123456789/10326instacron:UCAInstitucionalhttps://repositorio.uca.edu.ar/Universidad privadaNo correspondehttps://repositorio.uca.edu.ar/oaiclaudia_fernandez@uca.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:25852025-07-03 10:57:27.657Repositorio Institucional (UCA) - Pontificia Universidad Católica Argentinafalse
dc.title.none.fl_str_mv Changing dynamics : time-varying autoregressive models using generalized additive modeling
title Changing dynamics : time-varying autoregressive models using generalized additive modeling
spellingShingle Changing dynamics : time-varying autoregressive models using generalized additive modeling
Bringmann, Laura F.
SERIES TEMPORALES
METODOS ESTADISTICOS
REGRESION LINEAL
PSICOLOGIA
MODELOS MATEMATICOS
title_short Changing dynamics : time-varying autoregressive models using generalized additive modeling
title_full Changing dynamics : time-varying autoregressive models using generalized additive modeling
title_fullStr Changing dynamics : time-varying autoregressive models using generalized additive modeling
title_full_unstemmed Changing dynamics : time-varying autoregressive models using generalized additive modeling
title_sort Changing dynamics : time-varying autoregressive models using generalized additive modeling
dc.creator.none.fl_str_mv Bringmann, Laura F.
Vigo, Daniel Eduardo
Borsboom, Denny
Hamaker, Ellen L.
Aubert, André E.
Tuerlinckx, Francis
author Bringmann, Laura F.
author_facet Bringmann, Laura F.
Vigo, Daniel Eduardo
Borsboom, Denny
Hamaker, Ellen L.
Aubert, André E.
Tuerlinckx, Francis
author_role author
author2 Vigo, Daniel Eduardo
Borsboom, Denny
Hamaker, Ellen L.
Aubert, André E.
Tuerlinckx, Francis
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv SERIES TEMPORALES
METODOS ESTADISTICOS
REGRESION LINEAL
PSICOLOGIA
MODELOS MATEMATICOS
topic SERIES TEMPORALES
METODOS ESTADISTICOS
REGRESION LINEAL
PSICOLOGIA
MODELOS MATEMATICOS
dc.description.none.fl_txt_mv Fil: Bringmann, Laura F. University of Leuven. Department Quantitative Psychology and Individual Differences; Bélgica
Fil: Hamaker, Ellen L. University of Utrecht; Países Bajos
Fil: Vigo, Daniel Eduardo. Pontificia Universidad Católica Argentina. Facultad de Ciencias Médicas. Instituto de Investigaciones Biomédicas; Argentina
Fil: Vigo, Daniel Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Vigo, Daniel Eduardo. University of Leuven; Bélgica
Fil: Aubert, André E. University of Leuven; Bélgica
Fil: Borsboom, Denny. University of Amsterdam; Países Bajos
Fil: Tuerlinckx, Francis. University of Leuven; Bélgica
Abstract: In psychology, the use of intensive longitudinal data has steeply increased during the past decade. As a result, studying temporal dependencies in such data with autoregressive modeling is becoming common practice. However, standard autoregressive models are often suboptimal as they assume that parameters are time-invariant. This is problematic if changing dynamics (e.g., changes in the temporal dependency of a process) govern the time series. Often a change in the process, such as emotional well-being during therapy, is the very reason why it is interesting and important to study psychological dynamics. As a result, there is a need for an easily applicable method for studying such nonstationary processes that result from changing dynamics. In this article we present such a tool: the semiparametric TV-AR model. We show with a simulation study and an empirical application that the TV-AR model can approximate nonstationary processes well if there are at least 100 time points available and no unknown abrupt changes in the data. Notably, no prior knowledge of the processes that drive change in the dynamic structure is necessary. We conclude that the TV-AR model has significant potential for studying changing dynamics in psychology.
description Fil: Bringmann, Laura F. University of Leuven. Department Quantitative Psychology and Individual Differences; Bélgica
publishDate 2017
dc.date.none.fl_str_mv 2017
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/acceptedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str acceptedVersion
dc.identifier.none.fl_str_mv https://repositorio.uca.edu.ar/handle/123456789/10326
1082-989X (impreso)
1939-1463 (online)
10.1037/met0000085
Bringmann, L. F., et al. Changing dynamics : time-varying autoregressive models using generalized additive modeling [en línea]. Postprint de artículo publicado en Psychological Methods. 2017, 22 (3). doi:10.1037/met0000085. Disponible en: https://repositorio.uca.edu.ar/handle/123456789/10326
url https://repositorio.uca.edu.ar/handle/123456789/10326
identifier_str_mv 1082-989X (impreso)
1939-1463 (online)
10.1037/met0000085
Bringmann, L. F., et al. Changing dynamics : time-varying autoregressive models using generalized additive modeling [en línea]. Postprint de artículo publicado en Psychological Methods. 2017, 22 (3). doi:10.1037/met0000085. Disponible en: https://repositorio.uca.edu.ar/handle/123456789/10326
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv American Psychological Association
publisher.none.fl_str_mv American Psychological Association
dc.source.none.fl_str_mv Psychological Methods. 2017, 22 (3)
reponame:Repositorio Institucional (UCA)
instname:Pontificia Universidad Católica Argentina
reponame_str Repositorio Institucional (UCA)
collection Repositorio Institucional (UCA)
instname_str Pontificia Universidad Católica Argentina
repository.name.fl_str_mv Repositorio Institucional (UCA) - Pontificia Universidad Católica Argentina
repository.mail.fl_str_mv claudia_fernandez@uca.edu.ar
_version_ 1836638352104751104
score 13.13397