TRPC3 positively regulates reactive oxygen species driving maladaptive cardiac remodeling

Autores
Kitajima, Naoyuki; Numaga-Tomita, Takuro; Watanabe, Masahiko; Kuroda, Takuya; Nishimura, Akiyuki; Miyano, Kei; Yasuda, Satoshi; Kuwahara, Koichiro; Sato, Yoji; Ide, Tomomi; Birnbaumer, Lutz; Sumimoto, Hideki; Mori, Yasuo; Nishida, Motohiro
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Fil: Kitajima, Naoyuki. National Institute for Physiological Sciences. Division of Cardiocirculatory Signaling. Okazaki Institute for Integrative Bioscience; Japón
Fil: Kitajima, Naoyuki. Kyushu University. Graduate School of Pharmaceutical Sciences. Department of Translational Pharmaceutical Sciences; Japón
Fil: Numaga-Tomita, Takuro. National Institute for Physiological Sciences. Division of Cardiocirculatory Signaling. Okazaki Institute for Integrative Bioscience; Japón
Fil: Numaga-Tomita, Takuro. The Graduate University for Advanced Studies. School of Life Science. Department of Physiological Sciences; Japón
Fil: Watanabe, Masahiko. Hokkaido University School of Medicine. Department of Anatomy; Japón
Fil: Kuroda, Takuya. National Institute of Health Sciences. Division of Cell-Based Therapeutic Products; Japón
Fil: Nishimura, Akiyuki. National Institute for Physiological Sciences. Division of Cardiocirculatory Signaling. Okazaki Institute for Integrative Bioscience; Japón
Fil: Nishimura, Akiyuki. The Graduate University for Advanced Studies. School of Life Science. Department of Physiological Sciences; Japón
Fil: Miyano, Kei. Kyushu University. Graduate School of Medical Sciences. Department of Biochemistry; Japón
Fil: Yasuda, Satoshi. National Institute of Health Sciences. Division of Cell-Based Therapeutic Products; Japón
Fil: Kuwahara, Koichiro. Kyoto University. Graduate School of Medicine. Department of Cardiovascular Medicine; Japón
Fil: Sato, Yoji. Kyushu University. Graduate School of Pharmaceutical Sciences. Department of Translational Pharmaceutical Sciences; Japón
Fil: Sato, Yoji. National Institute of Health Sciences. Division of Cell-Based Therapeutic Products; Japón
Fil: Ide, Tomomi. Kyushu University. Department of Cardiovascular Medicine. Graduate School of Medical Sciences; Japón
Fil: Birnbaumer, Lutz. National Institute of Environmental Health Sciences. Laboratory of Neuroscience; Estados Unidos
Fil: Birnbaumer, Lutz. Pontificia Universidad Católica Argentina. Facultad de Ciencias Médicas. Instituto de Investigaciones Biomédicas; Argentina
Fil: Sumimoto, Hideki. Kyushu University. Graduate School of Medical Sciences. Department of Biochemistry; Japón
Fil: Mori, Yasuo. Kyoto University. Graduate School of Engineering. Department of Synthetic Chemistry and Biological Chemistry; Japón
Fil: Nishida, Motohiro. National Institute for Physiological Sciences. Division of Cardiocirculatory Signaling. Okazaki Institute for Integrative Bioscience; Japón
Fil: Nishida, Motohiro. Kyushu University. Graduate School of Pharmaceutical Sciences. Department of Translational Pharmaceutical Sciences; Japón
Fil: Nishida, Motohiro. The Graduate University for Advanced Studies. School of Life Science. Department of Physiological Sciences; Japón
Fil: Nishida, Motohiro. Precursory Research for Embryonic Science and Technology; Japón
Abstract: Reactive oxygen species (ROS) produced by NADPH oxidase 2 (Nox2) function as key mediators of mechanotransduction during both physiological adaptation to mechanical load and maladaptive remodeling of the heart. This is despite low levels of cardiac Nox2 expression. The mechanism underlying the transition from adaptation to maladaptation remains obscure, however. We demonstrate that transient receptor potential canonical 3 (TRPC3), a Ca2+-permeable channel, acts as a positive regulator of ROS (PRROS) in cardiomyocytes, and specifically regulates pressure overload-induced maladaptive cardiac remodeling in mice. TRPC3 physically interacts with Nox2 at specific C-terminal sites, thereby protecting Nox2 from proteasome-dependent degradation and amplifying Ca2+-dependent Nox2 activation through TRPC3-mediated background Ca2+ entry. Nox2 also stabilizes TRPC3 proteins to enhance TRPC3 channel activity. Expression of TRPC3 C-terminal polypeptide abolished TRPC3-regulated ROS production by disrupting TRPC3-Nox2 interaction, without affecting TRPC3-mediated Ca2+ influx. The novel TRPC3 function as a PRROS provides a mechanistic explanation for how diastolic Ca2+ influx specifically encodes signals to induce ROS-mediated maladaptive remodeling and offers new therapeutic possibilities.
Fuente
Scientific Reports. 2016;6:37001
Materia
CALCIO
OXIGENO
ADAPTACION
PROTEINAS
CORAZON
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
Repositorio Institucional (UCA)
Institución
Pontificia Universidad Católica Argentina
OAI Identificador
oai:ucacris:123456789/8758

id RIUCA_df6204eb61e9edb447aea8a86d5bbe0a
oai_identifier_str oai:ucacris:123456789/8758
network_acronym_str RIUCA
repository_id_str 2585
network_name_str Repositorio Institucional (UCA)
spelling TRPC3 positively regulates reactive oxygen species driving maladaptive cardiac remodelingKitajima, NaoyukiNumaga-Tomita, TakuroWatanabe, MasahikoKuroda, TakuyaNishimura, AkiyukiMiyano, KeiYasuda, SatoshiKuwahara, KoichiroSato, YojiIde, TomomiBirnbaumer, LutzSumimoto, HidekiMori, YasuoNishida, MotohiroCALCIOOXIGENOADAPTACIONPROTEINASCORAZONFil: Kitajima, Naoyuki. National Institute for Physiological Sciences. Division of Cardiocirculatory Signaling. Okazaki Institute for Integrative Bioscience; JapónFil: Kitajima, Naoyuki. Kyushu University. Graduate School of Pharmaceutical Sciences. Department of Translational Pharmaceutical Sciences; JapónFil: Numaga-Tomita, Takuro. National Institute for Physiological Sciences. Division of Cardiocirculatory Signaling. Okazaki Institute for Integrative Bioscience; JapónFil: Numaga-Tomita, Takuro. The Graduate University for Advanced Studies. School of Life Science. Department of Physiological Sciences; JapónFil: Watanabe, Masahiko. Hokkaido University School of Medicine. Department of Anatomy; JapónFil: Kuroda, Takuya. National Institute of Health Sciences. Division of Cell-Based Therapeutic Products; JapónFil: Nishimura, Akiyuki. National Institute for Physiological Sciences. Division of Cardiocirculatory Signaling. Okazaki Institute for Integrative Bioscience; JapónFil: Nishimura, Akiyuki. The Graduate University for Advanced Studies. School of Life Science. Department of Physiological Sciences; JapónFil: Miyano, Kei. Kyushu University. Graduate School of Medical Sciences. Department of Biochemistry; JapónFil: Yasuda, Satoshi. National Institute of Health Sciences. Division of Cell-Based Therapeutic Products; JapónFil: Kuwahara, Koichiro. Kyoto University. Graduate School of Medicine. Department of Cardiovascular Medicine; JapónFil: Sato, Yoji. Kyushu University. Graduate School of Pharmaceutical Sciences. Department of Translational Pharmaceutical Sciences; JapónFil: Sato, Yoji. National Institute of Health Sciences. Division of Cell-Based Therapeutic Products; JapónFil: Ide, Tomomi. Kyushu University. Department of Cardiovascular Medicine. Graduate School of Medical Sciences; JapónFil: Birnbaumer, Lutz. National Institute of Environmental Health Sciences. Laboratory of Neuroscience; Estados UnidosFil: Birnbaumer, Lutz. Pontificia Universidad Católica Argentina. Facultad de Ciencias Médicas. Instituto de Investigaciones Biomédicas; ArgentinaFil: Sumimoto, Hideki. Kyushu University. Graduate School of Medical Sciences. Department of Biochemistry; JapónFil: Mori, Yasuo. Kyoto University. Graduate School of Engineering. Department of Synthetic Chemistry and Biological Chemistry; JapónFil: Nishida, Motohiro. National Institute for Physiological Sciences. Division of Cardiocirculatory Signaling. Okazaki Institute for Integrative Bioscience; JapónFil: Nishida, Motohiro. Kyushu University. Graduate School of Pharmaceutical Sciences. Department of Translational Pharmaceutical Sciences; JapónFil: Nishida, Motohiro. The Graduate University for Advanced Studies. School of Life Science. Department of Physiological Sciences; JapónFil: Nishida, Motohiro. Precursory Research for Embryonic Science and Technology; JapónAbstract: Reactive oxygen species (ROS) produced by NADPH oxidase 2 (Nox2) function as key mediators of mechanotransduction during both physiological adaptation to mechanical load and maladaptive remodeling of the heart. This is despite low levels of cardiac Nox2 expression. The mechanism underlying the transition from adaptation to maladaptation remains obscure, however. We demonstrate that transient receptor potential canonical 3 (TRPC3), a Ca2+-permeable channel, acts as a positive regulator of ROS (PRROS) in cardiomyocytes, and specifically regulates pressure overload-induced maladaptive cardiac remodeling in mice. TRPC3 physically interacts with Nox2 at specific C-terminal sites, thereby protecting Nox2 from proteasome-dependent degradation and amplifying Ca2+-dependent Nox2 activation through TRPC3-mediated background Ca2+ entry. Nox2 also stabilizes TRPC3 proteins to enhance TRPC3 channel activity. Expression of TRPC3 C-terminal polypeptide abolished TRPC3-regulated ROS production by disrupting TRPC3-Nox2 interaction, without affecting TRPC3-mediated Ca2+ influx. The novel TRPC3 function as a PRROS provides a mechanistic explanation for how diastolic Ca2+ influx specifically encodes signals to induce ROS-mediated maladaptive remodeling and offers new therapeutic possibilities.2016info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttps://repositorio.uca.edu.ar/handle/123456789/87582045-232210.1038/srep3700127833156Kitajima N, Numaga-Tomita T, Watanabe M, et al. TRPC3 positively regulates reactive oxygen species driving maladaptive cardiac remodeling. Scientific Reports. 2016;6:37001. doi:10.1038/srep37001 Disponible en: https://repositorio.uca.edu.ar/handle/123456789/8758Scientific Reports. 2016;6:37001reponame:Repositorio Institucional (UCA)instname:Pontificia Universidad Católica Argentinaenginfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/2025-07-03T10:56:54Zoai:ucacris:123456789/8758instacron:UCAInstitucionalhttps://repositorio.uca.edu.ar/Universidad privadaNo correspondehttps://repositorio.uca.edu.ar/oaiclaudia_fernandez@uca.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:25852025-07-03 10:56:55.194Repositorio Institucional (UCA) - Pontificia Universidad Católica Argentinafalse
dc.title.none.fl_str_mv TRPC3 positively regulates reactive oxygen species driving maladaptive cardiac remodeling
title TRPC3 positively regulates reactive oxygen species driving maladaptive cardiac remodeling
spellingShingle TRPC3 positively regulates reactive oxygen species driving maladaptive cardiac remodeling
Kitajima, Naoyuki
CALCIO
OXIGENO
ADAPTACION
PROTEINAS
CORAZON
title_short TRPC3 positively regulates reactive oxygen species driving maladaptive cardiac remodeling
title_full TRPC3 positively regulates reactive oxygen species driving maladaptive cardiac remodeling
title_fullStr TRPC3 positively regulates reactive oxygen species driving maladaptive cardiac remodeling
title_full_unstemmed TRPC3 positively regulates reactive oxygen species driving maladaptive cardiac remodeling
title_sort TRPC3 positively regulates reactive oxygen species driving maladaptive cardiac remodeling
dc.creator.none.fl_str_mv Kitajima, Naoyuki
Numaga-Tomita, Takuro
Watanabe, Masahiko
Kuroda, Takuya
Nishimura, Akiyuki
Miyano, Kei
Yasuda, Satoshi
Kuwahara, Koichiro
Sato, Yoji
Ide, Tomomi
Birnbaumer, Lutz
Sumimoto, Hideki
Mori, Yasuo
Nishida, Motohiro
author Kitajima, Naoyuki
author_facet Kitajima, Naoyuki
Numaga-Tomita, Takuro
Watanabe, Masahiko
Kuroda, Takuya
Nishimura, Akiyuki
Miyano, Kei
Yasuda, Satoshi
Kuwahara, Koichiro
Sato, Yoji
Ide, Tomomi
Birnbaumer, Lutz
Sumimoto, Hideki
Mori, Yasuo
Nishida, Motohiro
author_role author
author2 Numaga-Tomita, Takuro
Watanabe, Masahiko
Kuroda, Takuya
Nishimura, Akiyuki
Miyano, Kei
Yasuda, Satoshi
Kuwahara, Koichiro
Sato, Yoji
Ide, Tomomi
Birnbaumer, Lutz
Sumimoto, Hideki
Mori, Yasuo
Nishida, Motohiro
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv CALCIO
OXIGENO
ADAPTACION
PROTEINAS
CORAZON
topic CALCIO
OXIGENO
ADAPTACION
PROTEINAS
CORAZON
dc.description.none.fl_txt_mv Fil: Kitajima, Naoyuki. National Institute for Physiological Sciences. Division of Cardiocirculatory Signaling. Okazaki Institute for Integrative Bioscience; Japón
Fil: Kitajima, Naoyuki. Kyushu University. Graduate School of Pharmaceutical Sciences. Department of Translational Pharmaceutical Sciences; Japón
Fil: Numaga-Tomita, Takuro. National Institute for Physiological Sciences. Division of Cardiocirculatory Signaling. Okazaki Institute for Integrative Bioscience; Japón
Fil: Numaga-Tomita, Takuro. The Graduate University for Advanced Studies. School of Life Science. Department of Physiological Sciences; Japón
Fil: Watanabe, Masahiko. Hokkaido University School of Medicine. Department of Anatomy; Japón
Fil: Kuroda, Takuya. National Institute of Health Sciences. Division of Cell-Based Therapeutic Products; Japón
Fil: Nishimura, Akiyuki. National Institute for Physiological Sciences. Division of Cardiocirculatory Signaling. Okazaki Institute for Integrative Bioscience; Japón
Fil: Nishimura, Akiyuki. The Graduate University for Advanced Studies. School of Life Science. Department of Physiological Sciences; Japón
Fil: Miyano, Kei. Kyushu University. Graduate School of Medical Sciences. Department of Biochemistry; Japón
Fil: Yasuda, Satoshi. National Institute of Health Sciences. Division of Cell-Based Therapeutic Products; Japón
Fil: Kuwahara, Koichiro. Kyoto University. Graduate School of Medicine. Department of Cardiovascular Medicine; Japón
Fil: Sato, Yoji. Kyushu University. Graduate School of Pharmaceutical Sciences. Department of Translational Pharmaceutical Sciences; Japón
Fil: Sato, Yoji. National Institute of Health Sciences. Division of Cell-Based Therapeutic Products; Japón
Fil: Ide, Tomomi. Kyushu University. Department of Cardiovascular Medicine. Graduate School of Medical Sciences; Japón
Fil: Birnbaumer, Lutz. National Institute of Environmental Health Sciences. Laboratory of Neuroscience; Estados Unidos
Fil: Birnbaumer, Lutz. Pontificia Universidad Católica Argentina. Facultad de Ciencias Médicas. Instituto de Investigaciones Biomédicas; Argentina
Fil: Sumimoto, Hideki. Kyushu University. Graduate School of Medical Sciences. Department of Biochemistry; Japón
Fil: Mori, Yasuo. Kyoto University. Graduate School of Engineering. Department of Synthetic Chemistry and Biological Chemistry; Japón
Fil: Nishida, Motohiro. National Institute for Physiological Sciences. Division of Cardiocirculatory Signaling. Okazaki Institute for Integrative Bioscience; Japón
Fil: Nishida, Motohiro. Kyushu University. Graduate School of Pharmaceutical Sciences. Department of Translational Pharmaceutical Sciences; Japón
Fil: Nishida, Motohiro. The Graduate University for Advanced Studies. School of Life Science. Department of Physiological Sciences; Japón
Fil: Nishida, Motohiro. Precursory Research for Embryonic Science and Technology; Japón
Abstract: Reactive oxygen species (ROS) produced by NADPH oxidase 2 (Nox2) function as key mediators of mechanotransduction during both physiological adaptation to mechanical load and maladaptive remodeling of the heart. This is despite low levels of cardiac Nox2 expression. The mechanism underlying the transition from adaptation to maladaptation remains obscure, however. We demonstrate that transient receptor potential canonical 3 (TRPC3), a Ca2+-permeable channel, acts as a positive regulator of ROS (PRROS) in cardiomyocytes, and specifically regulates pressure overload-induced maladaptive cardiac remodeling in mice. TRPC3 physically interacts with Nox2 at specific C-terminal sites, thereby protecting Nox2 from proteasome-dependent degradation and amplifying Ca2+-dependent Nox2 activation through TRPC3-mediated background Ca2+ entry. Nox2 also stabilizes TRPC3 proteins to enhance TRPC3 channel activity. Expression of TRPC3 C-terminal polypeptide abolished TRPC3-regulated ROS production by disrupting TRPC3-Nox2 interaction, without affecting TRPC3-mediated Ca2+ influx. The novel TRPC3 function as a PRROS provides a mechanistic explanation for how diastolic Ca2+ influx specifically encodes signals to induce ROS-mediated maladaptive remodeling and offers new therapeutic possibilities.
description Fil: Kitajima, Naoyuki. National Institute for Physiological Sciences. Division of Cardiocirculatory Signaling. Okazaki Institute for Integrative Bioscience; Japón
publishDate 2016
dc.date.none.fl_str_mv 2016
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://repositorio.uca.edu.ar/handle/123456789/8758
2045-2322
10.1038/srep37001
27833156
Kitajima N, Numaga-Tomita T, Watanabe M, et al. TRPC3 positively regulates reactive oxygen species driving maladaptive cardiac remodeling. Scientific Reports. 2016;6:37001. doi:10.1038/srep37001 Disponible en: https://repositorio.uca.edu.ar/handle/123456789/8758
url https://repositorio.uca.edu.ar/handle/123456789/8758
identifier_str_mv 2045-2322
10.1038/srep37001
27833156
Kitajima N, Numaga-Tomita T, Watanabe M, et al. TRPC3 positively regulates reactive oxygen species driving maladaptive cardiac remodeling. Scientific Reports. 2016;6:37001. doi:10.1038/srep37001 Disponible en: https://repositorio.uca.edu.ar/handle/123456789/8758
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv Scientific Reports. 2016;6:37001
reponame:Repositorio Institucional (UCA)
instname:Pontificia Universidad Católica Argentina
reponame_str Repositorio Institucional (UCA)
collection Repositorio Institucional (UCA)
instname_str Pontificia Universidad Católica Argentina
repository.name.fl_str_mv Repositorio Institucional (UCA) - Pontificia Universidad Católica Argentina
repository.mail.fl_str_mv claudia_fernandez@uca.edu.ar
_version_ 1836638347782520832
score 13.22299