TRPC3 positively regulates reactive oxygen species driving maladaptive cardiac remodeling
- Autores
- Kitajima, Naoyuki; Numaga-Tomita, Takuro; Watanabe, Masahiko; Kuroda, Takuya; Nishimura, Akiyuki; Miyano, Kei; Yasuda, Satoshi; Kuwahara, Koichiro; Sato, Yoji; Ide, Tomomi; Birnbaumer, Lutz; Sumimoto, Hideki; Mori, Yasuo; Nishida, Motohiro
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Fil: Kitajima, Naoyuki. National Institute for Physiological Sciences. Division of Cardiocirculatory Signaling. Okazaki Institute for Integrative Bioscience; Japón
Fil: Kitajima, Naoyuki. Kyushu University. Graduate School of Pharmaceutical Sciences. Department of Translational Pharmaceutical Sciences; Japón
Fil: Numaga-Tomita, Takuro. National Institute for Physiological Sciences. Division of Cardiocirculatory Signaling. Okazaki Institute for Integrative Bioscience; Japón
Fil: Numaga-Tomita, Takuro. The Graduate University for Advanced Studies. School of Life Science. Department of Physiological Sciences; Japón
Fil: Watanabe, Masahiko. Hokkaido University School of Medicine. Department of Anatomy; Japón
Fil: Kuroda, Takuya. National Institute of Health Sciences. Division of Cell-Based Therapeutic Products; Japón
Fil: Nishimura, Akiyuki. National Institute for Physiological Sciences. Division of Cardiocirculatory Signaling. Okazaki Institute for Integrative Bioscience; Japón
Fil: Nishimura, Akiyuki. The Graduate University for Advanced Studies. School of Life Science. Department of Physiological Sciences; Japón
Fil: Miyano, Kei. Kyushu University. Graduate School of Medical Sciences. Department of Biochemistry; Japón
Fil: Yasuda, Satoshi. National Institute of Health Sciences. Division of Cell-Based Therapeutic Products; Japón
Fil: Kuwahara, Koichiro. Kyoto University. Graduate School of Medicine. Department of Cardiovascular Medicine; Japón
Fil: Sato, Yoji. Kyushu University. Graduate School of Pharmaceutical Sciences. Department of Translational Pharmaceutical Sciences; Japón
Fil: Sato, Yoji. National Institute of Health Sciences. Division of Cell-Based Therapeutic Products; Japón
Fil: Ide, Tomomi. Kyushu University. Department of Cardiovascular Medicine. Graduate School of Medical Sciences; Japón
Fil: Birnbaumer, Lutz. National Institute of Environmental Health Sciences. Laboratory of Neuroscience; Estados Unidos
Fil: Birnbaumer, Lutz. Pontificia Universidad Católica Argentina. Facultad de Ciencias Médicas. Instituto de Investigaciones Biomédicas; Argentina
Fil: Sumimoto, Hideki. Kyushu University. Graduate School of Medical Sciences. Department of Biochemistry; Japón
Fil: Mori, Yasuo. Kyoto University. Graduate School of Engineering. Department of Synthetic Chemistry and Biological Chemistry; Japón
Fil: Nishida, Motohiro. National Institute for Physiological Sciences. Division of Cardiocirculatory Signaling. Okazaki Institute for Integrative Bioscience; Japón
Fil: Nishida, Motohiro. Kyushu University. Graduate School of Pharmaceutical Sciences. Department of Translational Pharmaceutical Sciences; Japón
Fil: Nishida, Motohiro. The Graduate University for Advanced Studies. School of Life Science. Department of Physiological Sciences; Japón
Fil: Nishida, Motohiro. Precursory Research for Embryonic Science and Technology; Japón
Abstract: Reactive oxygen species (ROS) produced by NADPH oxidase 2 (Nox2) function as key mediators of mechanotransduction during both physiological adaptation to mechanical load and maladaptive remodeling of the heart. This is despite low levels of cardiac Nox2 expression. The mechanism underlying the transition from adaptation to maladaptation remains obscure, however. We demonstrate that transient receptor potential canonical 3 (TRPC3), a Ca2+-permeable channel, acts as a positive regulator of ROS (PRROS) in cardiomyocytes, and specifically regulates pressure overload-induced maladaptive cardiac remodeling in mice. TRPC3 physically interacts with Nox2 at specific C-terminal sites, thereby protecting Nox2 from proteasome-dependent degradation and amplifying Ca2+-dependent Nox2 activation through TRPC3-mediated background Ca2+ entry. Nox2 also stabilizes TRPC3 proteins to enhance TRPC3 channel activity. Expression of TRPC3 C-terminal polypeptide abolished TRPC3-regulated ROS production by disrupting TRPC3-Nox2 interaction, without affecting TRPC3-mediated Ca2+ influx. The novel TRPC3 function as a PRROS provides a mechanistic explanation for how diastolic Ca2+ influx specifically encodes signals to induce ROS-mediated maladaptive remodeling and offers new therapeutic possibilities. - Fuente
- Scientific Reports. 2016;6:37001
- Materia
-
CALCIO
OXIGENO
ADAPTACION
PROTEINAS
CORAZON - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Pontificia Universidad Católica Argentina
- OAI Identificador
- oai:ucacris:123456789/8758
Ver los metadatos del registro completo
id |
RIUCA_df6204eb61e9edb447aea8a86d5bbe0a |
---|---|
oai_identifier_str |
oai:ucacris:123456789/8758 |
network_acronym_str |
RIUCA |
repository_id_str |
2585 |
network_name_str |
Repositorio Institucional (UCA) |
spelling |
TRPC3 positively regulates reactive oxygen species driving maladaptive cardiac remodelingKitajima, NaoyukiNumaga-Tomita, TakuroWatanabe, MasahikoKuroda, TakuyaNishimura, AkiyukiMiyano, KeiYasuda, SatoshiKuwahara, KoichiroSato, YojiIde, TomomiBirnbaumer, LutzSumimoto, HidekiMori, YasuoNishida, MotohiroCALCIOOXIGENOADAPTACIONPROTEINASCORAZONFil: Kitajima, Naoyuki. National Institute for Physiological Sciences. Division of Cardiocirculatory Signaling. Okazaki Institute for Integrative Bioscience; JapónFil: Kitajima, Naoyuki. Kyushu University. Graduate School of Pharmaceutical Sciences. Department of Translational Pharmaceutical Sciences; JapónFil: Numaga-Tomita, Takuro. National Institute for Physiological Sciences. Division of Cardiocirculatory Signaling. Okazaki Institute for Integrative Bioscience; JapónFil: Numaga-Tomita, Takuro. The Graduate University for Advanced Studies. School of Life Science. Department of Physiological Sciences; JapónFil: Watanabe, Masahiko. Hokkaido University School of Medicine. Department of Anatomy; JapónFil: Kuroda, Takuya. National Institute of Health Sciences. Division of Cell-Based Therapeutic Products; JapónFil: Nishimura, Akiyuki. National Institute for Physiological Sciences. Division of Cardiocirculatory Signaling. Okazaki Institute for Integrative Bioscience; JapónFil: Nishimura, Akiyuki. The Graduate University for Advanced Studies. School of Life Science. Department of Physiological Sciences; JapónFil: Miyano, Kei. Kyushu University. Graduate School of Medical Sciences. Department of Biochemistry; JapónFil: Yasuda, Satoshi. National Institute of Health Sciences. Division of Cell-Based Therapeutic Products; JapónFil: Kuwahara, Koichiro. Kyoto University. Graduate School of Medicine. Department of Cardiovascular Medicine; JapónFil: Sato, Yoji. Kyushu University. Graduate School of Pharmaceutical Sciences. Department of Translational Pharmaceutical Sciences; JapónFil: Sato, Yoji. National Institute of Health Sciences. Division of Cell-Based Therapeutic Products; JapónFil: Ide, Tomomi. Kyushu University. Department of Cardiovascular Medicine. Graduate School of Medical Sciences; JapónFil: Birnbaumer, Lutz. National Institute of Environmental Health Sciences. Laboratory of Neuroscience; Estados UnidosFil: Birnbaumer, Lutz. Pontificia Universidad Católica Argentina. Facultad de Ciencias Médicas. Instituto de Investigaciones Biomédicas; ArgentinaFil: Sumimoto, Hideki. Kyushu University. Graduate School of Medical Sciences. Department of Biochemistry; JapónFil: Mori, Yasuo. Kyoto University. Graduate School of Engineering. Department of Synthetic Chemistry and Biological Chemistry; JapónFil: Nishida, Motohiro. National Institute for Physiological Sciences. Division of Cardiocirculatory Signaling. Okazaki Institute for Integrative Bioscience; JapónFil: Nishida, Motohiro. Kyushu University. Graduate School of Pharmaceutical Sciences. Department of Translational Pharmaceutical Sciences; JapónFil: Nishida, Motohiro. The Graduate University for Advanced Studies. School of Life Science. Department of Physiological Sciences; JapónFil: Nishida, Motohiro. Precursory Research for Embryonic Science and Technology; JapónAbstract: Reactive oxygen species (ROS) produced by NADPH oxidase 2 (Nox2) function as key mediators of mechanotransduction during both physiological adaptation to mechanical load and maladaptive remodeling of the heart. This is despite low levels of cardiac Nox2 expression. The mechanism underlying the transition from adaptation to maladaptation remains obscure, however. We demonstrate that transient receptor potential canonical 3 (TRPC3), a Ca2+-permeable channel, acts as a positive regulator of ROS (PRROS) in cardiomyocytes, and specifically regulates pressure overload-induced maladaptive cardiac remodeling in mice. TRPC3 physically interacts with Nox2 at specific C-terminal sites, thereby protecting Nox2 from proteasome-dependent degradation and amplifying Ca2+-dependent Nox2 activation through TRPC3-mediated background Ca2+ entry. Nox2 also stabilizes TRPC3 proteins to enhance TRPC3 channel activity. Expression of TRPC3 C-terminal polypeptide abolished TRPC3-regulated ROS production by disrupting TRPC3-Nox2 interaction, without affecting TRPC3-mediated Ca2+ influx. The novel TRPC3 function as a PRROS provides a mechanistic explanation for how diastolic Ca2+ influx specifically encodes signals to induce ROS-mediated maladaptive remodeling and offers new therapeutic possibilities.2016info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttps://repositorio.uca.edu.ar/handle/123456789/87582045-232210.1038/srep3700127833156Kitajima N, Numaga-Tomita T, Watanabe M, et al. TRPC3 positively regulates reactive oxygen species driving maladaptive cardiac remodeling. Scientific Reports. 2016;6:37001. doi:10.1038/srep37001 Disponible en: https://repositorio.uca.edu.ar/handle/123456789/8758Scientific Reports. 2016;6:37001reponame:Repositorio Institucional (UCA)instname:Pontificia Universidad Católica Argentinaenginfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/2025-07-03T10:56:54Zoai:ucacris:123456789/8758instacron:UCAInstitucionalhttps://repositorio.uca.edu.ar/Universidad privadaNo correspondehttps://repositorio.uca.edu.ar/oaiclaudia_fernandez@uca.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:25852025-07-03 10:56:55.194Repositorio Institucional (UCA) - Pontificia Universidad Católica Argentinafalse |
dc.title.none.fl_str_mv |
TRPC3 positively regulates reactive oxygen species driving maladaptive cardiac remodeling |
title |
TRPC3 positively regulates reactive oxygen species driving maladaptive cardiac remodeling |
spellingShingle |
TRPC3 positively regulates reactive oxygen species driving maladaptive cardiac remodeling Kitajima, Naoyuki CALCIO OXIGENO ADAPTACION PROTEINAS CORAZON |
title_short |
TRPC3 positively regulates reactive oxygen species driving maladaptive cardiac remodeling |
title_full |
TRPC3 positively regulates reactive oxygen species driving maladaptive cardiac remodeling |
title_fullStr |
TRPC3 positively regulates reactive oxygen species driving maladaptive cardiac remodeling |
title_full_unstemmed |
TRPC3 positively regulates reactive oxygen species driving maladaptive cardiac remodeling |
title_sort |
TRPC3 positively regulates reactive oxygen species driving maladaptive cardiac remodeling |
dc.creator.none.fl_str_mv |
Kitajima, Naoyuki Numaga-Tomita, Takuro Watanabe, Masahiko Kuroda, Takuya Nishimura, Akiyuki Miyano, Kei Yasuda, Satoshi Kuwahara, Koichiro Sato, Yoji Ide, Tomomi Birnbaumer, Lutz Sumimoto, Hideki Mori, Yasuo Nishida, Motohiro |
author |
Kitajima, Naoyuki |
author_facet |
Kitajima, Naoyuki Numaga-Tomita, Takuro Watanabe, Masahiko Kuroda, Takuya Nishimura, Akiyuki Miyano, Kei Yasuda, Satoshi Kuwahara, Koichiro Sato, Yoji Ide, Tomomi Birnbaumer, Lutz Sumimoto, Hideki Mori, Yasuo Nishida, Motohiro |
author_role |
author |
author2 |
Numaga-Tomita, Takuro Watanabe, Masahiko Kuroda, Takuya Nishimura, Akiyuki Miyano, Kei Yasuda, Satoshi Kuwahara, Koichiro Sato, Yoji Ide, Tomomi Birnbaumer, Lutz Sumimoto, Hideki Mori, Yasuo Nishida, Motohiro |
author2_role |
author author author author author author author author author author author author author |
dc.subject.none.fl_str_mv |
CALCIO OXIGENO ADAPTACION PROTEINAS CORAZON |
topic |
CALCIO OXIGENO ADAPTACION PROTEINAS CORAZON |
dc.description.none.fl_txt_mv |
Fil: Kitajima, Naoyuki. National Institute for Physiological Sciences. Division of Cardiocirculatory Signaling. Okazaki Institute for Integrative Bioscience; Japón Fil: Kitajima, Naoyuki. Kyushu University. Graduate School of Pharmaceutical Sciences. Department of Translational Pharmaceutical Sciences; Japón Fil: Numaga-Tomita, Takuro. National Institute for Physiological Sciences. Division of Cardiocirculatory Signaling. Okazaki Institute for Integrative Bioscience; Japón Fil: Numaga-Tomita, Takuro. The Graduate University for Advanced Studies. School of Life Science. Department of Physiological Sciences; Japón Fil: Watanabe, Masahiko. Hokkaido University School of Medicine. Department of Anatomy; Japón Fil: Kuroda, Takuya. National Institute of Health Sciences. Division of Cell-Based Therapeutic Products; Japón Fil: Nishimura, Akiyuki. National Institute for Physiological Sciences. Division of Cardiocirculatory Signaling. Okazaki Institute for Integrative Bioscience; Japón Fil: Nishimura, Akiyuki. The Graduate University for Advanced Studies. School of Life Science. Department of Physiological Sciences; Japón Fil: Miyano, Kei. Kyushu University. Graduate School of Medical Sciences. Department of Biochemistry; Japón Fil: Yasuda, Satoshi. National Institute of Health Sciences. Division of Cell-Based Therapeutic Products; Japón Fil: Kuwahara, Koichiro. Kyoto University. Graduate School of Medicine. Department of Cardiovascular Medicine; Japón Fil: Sato, Yoji. Kyushu University. Graduate School of Pharmaceutical Sciences. Department of Translational Pharmaceutical Sciences; Japón Fil: Sato, Yoji. National Institute of Health Sciences. Division of Cell-Based Therapeutic Products; Japón Fil: Ide, Tomomi. Kyushu University. Department of Cardiovascular Medicine. Graduate School of Medical Sciences; Japón Fil: Birnbaumer, Lutz. National Institute of Environmental Health Sciences. Laboratory of Neuroscience; Estados Unidos Fil: Birnbaumer, Lutz. Pontificia Universidad Católica Argentina. Facultad de Ciencias Médicas. Instituto de Investigaciones Biomédicas; Argentina Fil: Sumimoto, Hideki. Kyushu University. Graduate School of Medical Sciences. Department of Biochemistry; Japón Fil: Mori, Yasuo. Kyoto University. Graduate School of Engineering. Department of Synthetic Chemistry and Biological Chemistry; Japón Fil: Nishida, Motohiro. National Institute for Physiological Sciences. Division of Cardiocirculatory Signaling. Okazaki Institute for Integrative Bioscience; Japón Fil: Nishida, Motohiro. Kyushu University. Graduate School of Pharmaceutical Sciences. Department of Translational Pharmaceutical Sciences; Japón Fil: Nishida, Motohiro. The Graduate University for Advanced Studies. School of Life Science. Department of Physiological Sciences; Japón Fil: Nishida, Motohiro. Precursory Research for Embryonic Science and Technology; Japón Abstract: Reactive oxygen species (ROS) produced by NADPH oxidase 2 (Nox2) function as key mediators of mechanotransduction during both physiological adaptation to mechanical load and maladaptive remodeling of the heart. This is despite low levels of cardiac Nox2 expression. The mechanism underlying the transition from adaptation to maladaptation remains obscure, however. We demonstrate that transient receptor potential canonical 3 (TRPC3), a Ca2+-permeable channel, acts as a positive regulator of ROS (PRROS) in cardiomyocytes, and specifically regulates pressure overload-induced maladaptive cardiac remodeling in mice. TRPC3 physically interacts with Nox2 at specific C-terminal sites, thereby protecting Nox2 from proteasome-dependent degradation and amplifying Ca2+-dependent Nox2 activation through TRPC3-mediated background Ca2+ entry. Nox2 also stabilizes TRPC3 proteins to enhance TRPC3 channel activity. Expression of TRPC3 C-terminal polypeptide abolished TRPC3-regulated ROS production by disrupting TRPC3-Nox2 interaction, without affecting TRPC3-mediated Ca2+ influx. The novel TRPC3 function as a PRROS provides a mechanistic explanation for how diastolic Ca2+ influx specifically encodes signals to induce ROS-mediated maladaptive remodeling and offers new therapeutic possibilities. |
description |
Fil: Kitajima, Naoyuki. National Institute for Physiological Sciences. Division of Cardiocirculatory Signaling. Okazaki Institute for Integrative Bioscience; Japón |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://repositorio.uca.edu.ar/handle/123456789/8758 2045-2322 10.1038/srep37001 27833156 Kitajima N, Numaga-Tomita T, Watanabe M, et al. TRPC3 positively regulates reactive oxygen species driving maladaptive cardiac remodeling. Scientific Reports. 2016;6:37001. doi:10.1038/srep37001 Disponible en: https://repositorio.uca.edu.ar/handle/123456789/8758 |
url |
https://repositorio.uca.edu.ar/handle/123456789/8758 |
identifier_str_mv |
2045-2322 10.1038/srep37001 27833156 Kitajima N, Numaga-Tomita T, Watanabe M, et al. TRPC3 positively regulates reactive oxygen species driving maladaptive cardiac remodeling. Scientific Reports. 2016;6:37001. doi:10.1038/srep37001 Disponible en: https://repositorio.uca.edu.ar/handle/123456789/8758 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
Scientific Reports. 2016;6:37001 reponame:Repositorio Institucional (UCA) instname:Pontificia Universidad Católica Argentina |
reponame_str |
Repositorio Institucional (UCA) |
collection |
Repositorio Institucional (UCA) |
instname_str |
Pontificia Universidad Católica Argentina |
repository.name.fl_str_mv |
Repositorio Institucional (UCA) - Pontificia Universidad Católica Argentina |
repository.mail.fl_str_mv |
claudia_fernandez@uca.edu.ar |
_version_ |
1836638347782520832 |
score |
13.22299 |