TRPC3-GEF-H1 axis mediates pressure overload-induced cardiac fibrosis
- Autores
- Numaga-Tomita, Takuro; Kitajima, Naoyuki; Kuroda, Takuya; Nishimura, Akiyuki; Miyano, Kei; Yasuda, Satoshi; Kuwahara, Koichiro; Sato, Yoji; Ide, Tomomi; Birnbaumer, Lutz; Sumimoto, Hideki; Mori, Yasuo; Nishida, Motohiro
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Fil: Numaga-Tomita, Takuro. National Institute for Physiological Sciences. Okazaki Institute for Integrative Bioscience. Division of Cardiocirculatory Signaling; Japón
Fil: Numaga-Tomita, Takuro. The Graduate University for Advanced Studies. School of Life Science. Department of Physiological Sciences; Japón
Fil: Kitajima, Naoyuki. National Institute for Physiological Sciences. Okazaki Institute for Integrative Bioscience. Division of Cardiocirculatory Signaling; Japón
Fil: Kitajima, Naoyuki. Kyushu University. Graduate School of Pharmaceutical Sciences. Department of Translational Pharmaceutical Sciences; Japón
Fil: Kuroda, Takuya. National Institute of Health Sciences. Division of Cell-Based Therapeutic Products; Japón
Fil: Nishimura, Akiyuki. National Institute for Physiological Sciences. Okazaki Institute for Integrative Bioscience. Division of Cardiocirculatory Signaling; Japón
Fil: Nishimura, Akiyuki. The Graduate University for Advanced Studies. School of Life Science. Department of Physiological Sciences; Japón
Fil: Miyano, Kei. Kyushu University. Graduate School of Medical Sciences. Department of Biochemistry; Japón
Fil: Yasuda, Satoshi. National Institute of Health Sciences. Division of Cell-Based Therapeutic Products; Japón
Fil: Kuwahara, Koichiro. Shinshu University. School of Medicine. Department of Cardiovascular Medicine; Japón
Fil: Sato, Yoji. Kyushu University. Graduate School of Pharmaceutical Sciences. Department of Translational Pharmaceutical Sciences; Japón
Fil: Sato, Yoji. National Institute of Health Sciences. Division of Cell-Based Therapeutic Products; Japón
Fil: Ide, Tomomi. Kyushu University. Graduate School of Medical Sciences. Department of Cardiovascular Medicine; Argentina
Fil: Birnbaumer, Lutz. Pontificia Universidad Católica Argentina. Facultad de Ciencias Médicas. Instituto de Investigaciones Biomédicas; Argentina
Fil: Birnbaumer, Lutz. National Institute of Environmental Health Sciences. Neurobiology Laboratory; Estados Unidos
Fil: Sumimoto, Hideki. Kyushu University. Graduate School of Medical Sciences. Department of Biochemistry; Japón
Fil: Mori, Yasuo. Kyoto University. Graduate School of Engineering. Department of Synthetic Chemistry and Biological Chemistry; Japón
Fil: Nishida, Motohiro. National Institute for Physiological Sciences. Okazaki Institute for Integrative Bioscience. Division of Cardiocirculatory Signaling; Japón
Fil: Nishida, Motohiro. The Graduate University for Advanced Studies. School of Life Science. Department of Physiological Sciences; Japón
Fil: Nishida, Motohiro. Kyushu University. Graduate School of Pharmaceutical Sciences. Department of Translational Pharmaceutical Sciences; Japón
Fil: Nishida, Motohiro. Precursory Research for Embryonic Science and Technology; Japón
Abstract: Structural cardiac remodeling, accompanying cytoskeletal reorganization of cardiac cells, is a major clinical outcome of diastolic heart failure. A highly local Ca2+ influx across the plasma membrane has been suggested to code signals to induce Rho GTPase-mediated fibrosis, but it is obscure how the heart specifically decodes the local Ca2+ influx as a cytoskeletal reorganizing signal under the conditions of the rhythmic Ca2+ handling required for pump function. We found that an inhibition of transient receptor potential canonical 3 (TRPC3) channel activity exhibited resistance to Rho-mediated maladaptive fibrosis in pressure-overloaded mouse hearts. Proteomic analysis revealed that microtubule-associated Rho guanine nucleotide exchange factor, GEF-H1, participates in TRPC3-mediated RhoA activation induced by mechanical stress in cardiomyocytes and transforming growth factor (TGF) β stimulation in cardiac fibroblasts. We previously revealed that TRPC3 functionally interacts with microtubule-associated NADPH oxidase (Nox) 2, and inhibition of Nox2 attenuated mechanical stretch-induced GEF-H1 activation in cardiomyocytes. Finally, pharmacological TRPC3 inhibition significantly suppressed fibrotic responses in human cardiomyocytes and cardiac fibroblasts. These results strongly suggest that microtubule-localized TRPC3-GEF-H1 axis mediates fibrotic responses commonly in cardiac myocytes and fibroblasts induced by physico-chemical stimulation. - Fuente
- Scientific Reports. 2016;6:39383
- Materia
-
FIBROSIS
CORAZON
CRECIMIENTO
CELULAS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Pontificia Universidad Católica Argentina
- OAI Identificador
- oai:ucacris:123456789/8746
Ver los metadatos del registro completo
id |
RIUCA_0caf4e4b1b4eb263fbe1cd93a1582785 |
---|---|
oai_identifier_str |
oai:ucacris:123456789/8746 |
network_acronym_str |
RIUCA |
repository_id_str |
2585 |
network_name_str |
Repositorio Institucional (UCA) |
spelling |
TRPC3-GEF-H1 axis mediates pressure overload-induced cardiac fibrosisNumaga-Tomita, TakuroKitajima, NaoyukiKuroda, TakuyaNishimura, AkiyukiMiyano, KeiYasuda, SatoshiKuwahara, KoichiroSato, YojiIde, TomomiBirnbaumer, LutzSumimoto, HidekiMori, YasuoNishida, MotohiroFIBROSISCORAZONCRECIMIENTOCELULASFil: Numaga-Tomita, Takuro. National Institute for Physiological Sciences. Okazaki Institute for Integrative Bioscience. Division of Cardiocirculatory Signaling; JapónFil: Numaga-Tomita, Takuro. The Graduate University for Advanced Studies. School of Life Science. Department of Physiological Sciences; JapónFil: Kitajima, Naoyuki. National Institute for Physiological Sciences. Okazaki Institute for Integrative Bioscience. Division of Cardiocirculatory Signaling; JapónFil: Kitajima, Naoyuki. Kyushu University. Graduate School of Pharmaceutical Sciences. Department of Translational Pharmaceutical Sciences; JapónFil: Kuroda, Takuya. National Institute of Health Sciences. Division of Cell-Based Therapeutic Products; JapónFil: Nishimura, Akiyuki. National Institute for Physiological Sciences. Okazaki Institute for Integrative Bioscience. Division of Cardiocirculatory Signaling; JapónFil: Nishimura, Akiyuki. The Graduate University for Advanced Studies. School of Life Science. Department of Physiological Sciences; JapónFil: Miyano, Kei. Kyushu University. Graduate School of Medical Sciences. Department of Biochemistry; JapónFil: Yasuda, Satoshi. National Institute of Health Sciences. Division of Cell-Based Therapeutic Products; JapónFil: Kuwahara, Koichiro. Shinshu University. School of Medicine. Department of Cardiovascular Medicine; JapónFil: Sato, Yoji. Kyushu University. Graduate School of Pharmaceutical Sciences. Department of Translational Pharmaceutical Sciences; JapónFil: Sato, Yoji. National Institute of Health Sciences. Division of Cell-Based Therapeutic Products; JapónFil: Ide, Tomomi. Kyushu University. Graduate School of Medical Sciences. Department of Cardiovascular Medicine; ArgentinaFil: Birnbaumer, Lutz. Pontificia Universidad Católica Argentina. Facultad de Ciencias Médicas. Instituto de Investigaciones Biomédicas; ArgentinaFil: Birnbaumer, Lutz. National Institute of Environmental Health Sciences. Neurobiology Laboratory; Estados UnidosFil: Sumimoto, Hideki. Kyushu University. Graduate School of Medical Sciences. Department of Biochemistry; JapónFil: Mori, Yasuo. Kyoto University. Graduate School of Engineering. Department of Synthetic Chemistry and Biological Chemistry; JapónFil: Nishida, Motohiro. National Institute for Physiological Sciences. Okazaki Institute for Integrative Bioscience. Division of Cardiocirculatory Signaling; JapónFil: Nishida, Motohiro. The Graduate University for Advanced Studies. School of Life Science. Department of Physiological Sciences; JapónFil: Nishida, Motohiro. Kyushu University. Graduate School of Pharmaceutical Sciences. Department of Translational Pharmaceutical Sciences; JapónFil: Nishida, Motohiro. Precursory Research for Embryonic Science and Technology; JapónAbstract: Structural cardiac remodeling, accompanying cytoskeletal reorganization of cardiac cells, is a major clinical outcome of diastolic heart failure. A highly local Ca2+ influx across the plasma membrane has been suggested to code signals to induce Rho GTPase-mediated fibrosis, but it is obscure how the heart specifically decodes the local Ca2+ influx as a cytoskeletal reorganizing signal under the conditions of the rhythmic Ca2+ handling required for pump function. We found that an inhibition of transient receptor potential canonical 3 (TRPC3) channel activity exhibited resistance to Rho-mediated maladaptive fibrosis in pressure-overloaded mouse hearts. Proteomic analysis revealed that microtubule-associated Rho guanine nucleotide exchange factor, GEF-H1, participates in TRPC3-mediated RhoA activation induced by mechanical stress in cardiomyocytes and transforming growth factor (TGF) β stimulation in cardiac fibroblasts. We previously revealed that TRPC3 functionally interacts with microtubule-associated NADPH oxidase (Nox) 2, and inhibition of Nox2 attenuated mechanical stretch-induced GEF-H1 activation in cardiomyocytes. Finally, pharmacological TRPC3 inhibition significantly suppressed fibrotic responses in human cardiomyocytes and cardiac fibroblasts. These results strongly suggest that microtubule-localized TRPC3-GEF-H1 axis mediates fibrotic responses commonly in cardiac myocytes and fibroblasts induced by physico-chemical stimulation.Nature Research2016info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttps://repositorio.uca.edu.ar/handle/123456789/87462045-232210.1038/srep3938327991560Numaga-Tomita T, Kitajima N, Kuroda T, et al. TRPC3-GEF-H1 axis mediates pressure overload-induced cardiac fibrosis [en línea]. Scientific Reports. 2016;6:39383. doi:10.1038/srep39383 Disponible en: https://repositorio.uca.edu.ar/handle/123456789/8746Scientific Reports. 2016;6:39383reponame:Repositorio Institucional (UCA)instname:Pontificia Universidad Católica Argentinaenginfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/2025-07-03T10:56:54Zoai:ucacris:123456789/8746instacron:UCAInstitucionalhttps://repositorio.uca.edu.ar/Universidad privadaNo correspondehttps://repositorio.uca.edu.ar/oaiclaudia_fernandez@uca.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:25852025-07-03 10:56:55.161Repositorio Institucional (UCA) - Pontificia Universidad Católica Argentinafalse |
dc.title.none.fl_str_mv |
TRPC3-GEF-H1 axis mediates pressure overload-induced cardiac fibrosis |
title |
TRPC3-GEF-H1 axis mediates pressure overload-induced cardiac fibrosis |
spellingShingle |
TRPC3-GEF-H1 axis mediates pressure overload-induced cardiac fibrosis Numaga-Tomita, Takuro FIBROSIS CORAZON CRECIMIENTO CELULAS |
title_short |
TRPC3-GEF-H1 axis mediates pressure overload-induced cardiac fibrosis |
title_full |
TRPC3-GEF-H1 axis mediates pressure overload-induced cardiac fibrosis |
title_fullStr |
TRPC3-GEF-H1 axis mediates pressure overload-induced cardiac fibrosis |
title_full_unstemmed |
TRPC3-GEF-H1 axis mediates pressure overload-induced cardiac fibrosis |
title_sort |
TRPC3-GEF-H1 axis mediates pressure overload-induced cardiac fibrosis |
dc.creator.none.fl_str_mv |
Numaga-Tomita, Takuro Kitajima, Naoyuki Kuroda, Takuya Nishimura, Akiyuki Miyano, Kei Yasuda, Satoshi Kuwahara, Koichiro Sato, Yoji Ide, Tomomi Birnbaumer, Lutz Sumimoto, Hideki Mori, Yasuo Nishida, Motohiro |
author |
Numaga-Tomita, Takuro |
author_facet |
Numaga-Tomita, Takuro Kitajima, Naoyuki Kuroda, Takuya Nishimura, Akiyuki Miyano, Kei Yasuda, Satoshi Kuwahara, Koichiro Sato, Yoji Ide, Tomomi Birnbaumer, Lutz Sumimoto, Hideki Mori, Yasuo Nishida, Motohiro |
author_role |
author |
author2 |
Kitajima, Naoyuki Kuroda, Takuya Nishimura, Akiyuki Miyano, Kei Yasuda, Satoshi Kuwahara, Koichiro Sato, Yoji Ide, Tomomi Birnbaumer, Lutz Sumimoto, Hideki Mori, Yasuo Nishida, Motohiro |
author2_role |
author author author author author author author author author author author author |
dc.subject.none.fl_str_mv |
FIBROSIS CORAZON CRECIMIENTO CELULAS |
topic |
FIBROSIS CORAZON CRECIMIENTO CELULAS |
dc.description.none.fl_txt_mv |
Fil: Numaga-Tomita, Takuro. National Institute for Physiological Sciences. Okazaki Institute for Integrative Bioscience. Division of Cardiocirculatory Signaling; Japón Fil: Numaga-Tomita, Takuro. The Graduate University for Advanced Studies. School of Life Science. Department of Physiological Sciences; Japón Fil: Kitajima, Naoyuki. National Institute for Physiological Sciences. Okazaki Institute for Integrative Bioscience. Division of Cardiocirculatory Signaling; Japón Fil: Kitajima, Naoyuki. Kyushu University. Graduate School of Pharmaceutical Sciences. Department of Translational Pharmaceutical Sciences; Japón Fil: Kuroda, Takuya. National Institute of Health Sciences. Division of Cell-Based Therapeutic Products; Japón Fil: Nishimura, Akiyuki. National Institute for Physiological Sciences. Okazaki Institute for Integrative Bioscience. Division of Cardiocirculatory Signaling; Japón Fil: Nishimura, Akiyuki. The Graduate University for Advanced Studies. School of Life Science. Department of Physiological Sciences; Japón Fil: Miyano, Kei. Kyushu University. Graduate School of Medical Sciences. Department of Biochemistry; Japón Fil: Yasuda, Satoshi. National Institute of Health Sciences. Division of Cell-Based Therapeutic Products; Japón Fil: Kuwahara, Koichiro. Shinshu University. School of Medicine. Department of Cardiovascular Medicine; Japón Fil: Sato, Yoji. Kyushu University. Graduate School of Pharmaceutical Sciences. Department of Translational Pharmaceutical Sciences; Japón Fil: Sato, Yoji. National Institute of Health Sciences. Division of Cell-Based Therapeutic Products; Japón Fil: Ide, Tomomi. Kyushu University. Graduate School of Medical Sciences. Department of Cardiovascular Medicine; Argentina Fil: Birnbaumer, Lutz. Pontificia Universidad Católica Argentina. Facultad de Ciencias Médicas. Instituto de Investigaciones Biomédicas; Argentina Fil: Birnbaumer, Lutz. National Institute of Environmental Health Sciences. Neurobiology Laboratory; Estados Unidos Fil: Sumimoto, Hideki. Kyushu University. Graduate School of Medical Sciences. Department of Biochemistry; Japón Fil: Mori, Yasuo. Kyoto University. Graduate School of Engineering. Department of Synthetic Chemistry and Biological Chemistry; Japón Fil: Nishida, Motohiro. National Institute for Physiological Sciences. Okazaki Institute for Integrative Bioscience. Division of Cardiocirculatory Signaling; Japón Fil: Nishida, Motohiro. The Graduate University for Advanced Studies. School of Life Science. Department of Physiological Sciences; Japón Fil: Nishida, Motohiro. Kyushu University. Graduate School of Pharmaceutical Sciences. Department of Translational Pharmaceutical Sciences; Japón Fil: Nishida, Motohiro. Precursory Research for Embryonic Science and Technology; Japón Abstract: Structural cardiac remodeling, accompanying cytoskeletal reorganization of cardiac cells, is a major clinical outcome of diastolic heart failure. A highly local Ca2+ influx across the plasma membrane has been suggested to code signals to induce Rho GTPase-mediated fibrosis, but it is obscure how the heart specifically decodes the local Ca2+ influx as a cytoskeletal reorganizing signal under the conditions of the rhythmic Ca2+ handling required for pump function. We found that an inhibition of transient receptor potential canonical 3 (TRPC3) channel activity exhibited resistance to Rho-mediated maladaptive fibrosis in pressure-overloaded mouse hearts. Proteomic analysis revealed that microtubule-associated Rho guanine nucleotide exchange factor, GEF-H1, participates in TRPC3-mediated RhoA activation induced by mechanical stress in cardiomyocytes and transforming growth factor (TGF) β stimulation in cardiac fibroblasts. We previously revealed that TRPC3 functionally interacts with microtubule-associated NADPH oxidase (Nox) 2, and inhibition of Nox2 attenuated mechanical stretch-induced GEF-H1 activation in cardiomyocytes. Finally, pharmacological TRPC3 inhibition significantly suppressed fibrotic responses in human cardiomyocytes and cardiac fibroblasts. These results strongly suggest that microtubule-localized TRPC3-GEF-H1 axis mediates fibrotic responses commonly in cardiac myocytes and fibroblasts induced by physico-chemical stimulation. |
description |
Fil: Numaga-Tomita, Takuro. National Institute for Physiological Sciences. Okazaki Institute for Integrative Bioscience. Division of Cardiocirculatory Signaling; Japón |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://repositorio.uca.edu.ar/handle/123456789/8746 2045-2322 10.1038/srep39383 27991560 Numaga-Tomita T, Kitajima N, Kuroda T, et al. TRPC3-GEF-H1 axis mediates pressure overload-induced cardiac fibrosis [en línea]. Scientific Reports. 2016;6:39383. doi:10.1038/srep39383 Disponible en: https://repositorio.uca.edu.ar/handle/123456789/8746 |
url |
https://repositorio.uca.edu.ar/handle/123456789/8746 |
identifier_str_mv |
2045-2322 10.1038/srep39383 27991560 Numaga-Tomita T, Kitajima N, Kuroda T, et al. TRPC3-GEF-H1 axis mediates pressure overload-induced cardiac fibrosis [en línea]. Scientific Reports. 2016;6:39383. doi:10.1038/srep39383 Disponible en: https://repositorio.uca.edu.ar/handle/123456789/8746 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Nature Research |
publisher.none.fl_str_mv |
Nature Research |
dc.source.none.fl_str_mv |
Scientific Reports. 2016;6:39383 reponame:Repositorio Institucional (UCA) instname:Pontificia Universidad Católica Argentina |
reponame_str |
Repositorio Institucional (UCA) |
collection |
Repositorio Institucional (UCA) |
instname_str |
Pontificia Universidad Católica Argentina |
repository.name.fl_str_mv |
Repositorio Institucional (UCA) - Pontificia Universidad Católica Argentina |
repository.mail.fl_str_mv |
claudia_fernandez@uca.edu.ar |
_version_ |
1836638347759452160 |
score |
13.001348 |