TRPC3-GEF-H1 axis mediates pressure overload-induced cardiac fibrosis

Autores
Numaga-Tomita, Takuro; Kitajima, Naoyuki; Kuroda, Takuya; Nishimura, Akiyuki; Miyano, Kei; Yasuda, Satoshi; Kuwahara, Koichiro; Sato, Yoji; Ide, Tomomi; Birnbaumer, Lutz; Sumimoto, Hideki; Mori, Yasuo; Nishida, Motohiro
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Fil: Numaga-Tomita, Takuro. National Institute for Physiological Sciences. Okazaki Institute for Integrative Bioscience. Division of Cardiocirculatory Signaling; Japón
Fil: Numaga-Tomita, Takuro. The Graduate University for Advanced Studies. School of Life Science. Department of Physiological Sciences; Japón
Fil: Kitajima, Naoyuki. National Institute for Physiological Sciences. Okazaki Institute for Integrative Bioscience. Division of Cardiocirculatory Signaling; Japón
Fil: Kitajima, Naoyuki. Kyushu University. Graduate School of Pharmaceutical Sciences. Department of Translational Pharmaceutical Sciences; Japón
Fil: Kuroda, Takuya. National Institute of Health Sciences. Division of Cell-Based Therapeutic Products; Japón
Fil: Nishimura, Akiyuki. National Institute for Physiological Sciences. Okazaki Institute for Integrative Bioscience. Division of Cardiocirculatory Signaling; Japón
Fil: Nishimura, Akiyuki. The Graduate University for Advanced Studies. School of Life Science. Department of Physiological Sciences; Japón
Fil: Miyano, Kei. Kyushu University. Graduate School of Medical Sciences. Department of Biochemistry; Japón
Fil: Yasuda, Satoshi. National Institute of Health Sciences. Division of Cell-Based Therapeutic Products; Japón
Fil: Kuwahara, Koichiro. Shinshu University. School of Medicine. Department of Cardiovascular Medicine; Japón
Fil: Sato, Yoji. Kyushu University. Graduate School of Pharmaceutical Sciences. Department of Translational Pharmaceutical Sciences; Japón
Fil: Sato, Yoji. National Institute of Health Sciences. Division of Cell-Based Therapeutic Products; Japón
Fil: Ide, Tomomi. Kyushu University. Graduate School of Medical Sciences. Department of Cardiovascular Medicine; Argentina
Fil: Birnbaumer, Lutz. Pontificia Universidad Católica Argentina. Facultad de Ciencias Médicas. Instituto de Investigaciones Biomédicas; Argentina
Fil: Birnbaumer, Lutz. National Institute of Environmental Health Sciences. Neurobiology Laboratory; Estados Unidos
Fil: Sumimoto, Hideki. Kyushu University. Graduate School of Medical Sciences. Department of Biochemistry; Japón
Fil: Mori, Yasuo. Kyoto University. Graduate School of Engineering. Department of Synthetic Chemistry and Biological Chemistry; Japón
Fil: Nishida, Motohiro. National Institute for Physiological Sciences. Okazaki Institute for Integrative Bioscience. Division of Cardiocirculatory Signaling; Japón
Fil: Nishida, Motohiro. The Graduate University for Advanced Studies. School of Life Science. Department of Physiological Sciences; Japón
Fil: Nishida, Motohiro. Kyushu University. Graduate School of Pharmaceutical Sciences. Department of Translational Pharmaceutical Sciences; Japón
Fil: Nishida, Motohiro. Precursory Research for Embryonic Science and Technology; Japón
Abstract: Structural cardiac remodeling, accompanying cytoskeletal reorganization of cardiac cells, is a major clinical outcome of diastolic heart failure. A highly local Ca2+ influx across the plasma membrane has been suggested to code signals to induce Rho GTPase-mediated fibrosis, but it is obscure how the heart specifically decodes the local Ca2+ influx as a cytoskeletal reorganizing signal under the conditions of the rhythmic Ca2+ handling required for pump function. We found that an inhibition of transient receptor potential canonical 3 (TRPC3) channel activity exhibited resistance to Rho-mediated maladaptive fibrosis in pressure-overloaded mouse hearts. Proteomic analysis revealed that microtubule-associated Rho guanine nucleotide exchange factor, GEF-H1, participates in TRPC3-mediated RhoA activation induced by mechanical stress in cardiomyocytes and transforming growth factor (TGF) β stimulation in cardiac fibroblasts. We previously revealed that TRPC3 functionally interacts with microtubule-associated NADPH oxidase (Nox) 2, and inhibition of Nox2 attenuated mechanical stretch-induced GEF-H1 activation in cardiomyocytes. Finally, pharmacological TRPC3 inhibition significantly suppressed fibrotic responses in human cardiomyocytes and cardiac fibroblasts. These results strongly suggest that microtubule-localized TRPC3-GEF-H1 axis mediates fibrotic responses commonly in cardiac myocytes and fibroblasts induced by physico-chemical stimulation.
Fuente
Scientific Reports. 2016;6:39383
Materia
FIBROSIS
CORAZON
CRECIMIENTO
CELULAS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
Repositorio Institucional (UCA)
Institución
Pontificia Universidad Católica Argentina
OAI Identificador
oai:ucacris:123456789/8746

id RIUCA_0caf4e4b1b4eb263fbe1cd93a1582785
oai_identifier_str oai:ucacris:123456789/8746
network_acronym_str RIUCA
repository_id_str 2585
network_name_str Repositorio Institucional (UCA)
spelling TRPC3-GEF-H1 axis mediates pressure overload-induced cardiac fibrosisNumaga-Tomita, TakuroKitajima, NaoyukiKuroda, TakuyaNishimura, AkiyukiMiyano, KeiYasuda, SatoshiKuwahara, KoichiroSato, YojiIde, TomomiBirnbaumer, LutzSumimoto, HidekiMori, YasuoNishida, MotohiroFIBROSISCORAZONCRECIMIENTOCELULASFil: Numaga-Tomita, Takuro. National Institute for Physiological Sciences. Okazaki Institute for Integrative Bioscience. Division of Cardiocirculatory Signaling; JapónFil: Numaga-Tomita, Takuro. The Graduate University for Advanced Studies. School of Life Science. Department of Physiological Sciences; JapónFil: Kitajima, Naoyuki. National Institute for Physiological Sciences. Okazaki Institute for Integrative Bioscience. Division of Cardiocirculatory Signaling; JapónFil: Kitajima, Naoyuki. Kyushu University. Graduate School of Pharmaceutical Sciences. Department of Translational Pharmaceutical Sciences; JapónFil: Kuroda, Takuya. National Institute of Health Sciences. Division of Cell-Based Therapeutic Products; JapónFil: Nishimura, Akiyuki. National Institute for Physiological Sciences. Okazaki Institute for Integrative Bioscience. Division of Cardiocirculatory Signaling; JapónFil: Nishimura, Akiyuki. The Graduate University for Advanced Studies. School of Life Science. Department of Physiological Sciences; JapónFil: Miyano, Kei. Kyushu University. Graduate School of Medical Sciences. Department of Biochemistry; JapónFil: Yasuda, Satoshi. National Institute of Health Sciences. Division of Cell-Based Therapeutic Products; JapónFil: Kuwahara, Koichiro. Shinshu University. School of Medicine. Department of Cardiovascular Medicine; JapónFil: Sato, Yoji. Kyushu University. Graduate School of Pharmaceutical Sciences. Department of Translational Pharmaceutical Sciences; JapónFil: Sato, Yoji. National Institute of Health Sciences. Division of Cell-Based Therapeutic Products; JapónFil: Ide, Tomomi. Kyushu University. Graduate School of Medical Sciences. Department of Cardiovascular Medicine; ArgentinaFil: Birnbaumer, Lutz. Pontificia Universidad Católica Argentina. Facultad de Ciencias Médicas. Instituto de Investigaciones Biomédicas; ArgentinaFil: Birnbaumer, Lutz. National Institute of Environmental Health Sciences. Neurobiology Laboratory; Estados UnidosFil: Sumimoto, Hideki. Kyushu University. Graduate School of Medical Sciences. Department of Biochemistry; JapónFil: Mori, Yasuo. Kyoto University. Graduate School of Engineering. Department of Synthetic Chemistry and Biological Chemistry; JapónFil: Nishida, Motohiro. National Institute for Physiological Sciences. Okazaki Institute for Integrative Bioscience. Division of Cardiocirculatory Signaling; JapónFil: Nishida, Motohiro. The Graduate University for Advanced Studies. School of Life Science. Department of Physiological Sciences; JapónFil: Nishida, Motohiro. Kyushu University. Graduate School of Pharmaceutical Sciences. Department of Translational Pharmaceutical Sciences; JapónFil: Nishida, Motohiro. Precursory Research for Embryonic Science and Technology; JapónAbstract: Structural cardiac remodeling, accompanying cytoskeletal reorganization of cardiac cells, is a major clinical outcome of diastolic heart failure. A highly local Ca2+ influx across the plasma membrane has been suggested to code signals to induce Rho GTPase-mediated fibrosis, but it is obscure how the heart specifically decodes the local Ca2+ influx as a cytoskeletal reorganizing signal under the conditions of the rhythmic Ca2+ handling required for pump function. We found that an inhibition of transient receptor potential canonical 3 (TRPC3) channel activity exhibited resistance to Rho-mediated maladaptive fibrosis in pressure-overloaded mouse hearts. Proteomic analysis revealed that microtubule-associated Rho guanine nucleotide exchange factor, GEF-H1, participates in TRPC3-mediated RhoA activation induced by mechanical stress in cardiomyocytes and transforming growth factor (TGF) β stimulation in cardiac fibroblasts. We previously revealed that TRPC3 functionally interacts with microtubule-associated NADPH oxidase (Nox) 2, and inhibition of Nox2 attenuated mechanical stretch-induced GEF-H1 activation in cardiomyocytes. Finally, pharmacological TRPC3 inhibition significantly suppressed fibrotic responses in human cardiomyocytes and cardiac fibroblasts. These results strongly suggest that microtubule-localized TRPC3-GEF-H1 axis mediates fibrotic responses commonly in cardiac myocytes and fibroblasts induced by physico-chemical stimulation.Nature Research2016info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttps://repositorio.uca.edu.ar/handle/123456789/87462045-232210.1038/srep3938327991560Numaga-Tomita T, Kitajima N, Kuroda T, et al. TRPC3-GEF-H1 axis mediates pressure overload-induced cardiac fibrosis [en línea]. Scientific Reports. 2016;6:39383. doi:10.1038/srep39383 Disponible en: https://repositorio.uca.edu.ar/handle/123456789/8746Scientific Reports. 2016;6:39383reponame:Repositorio Institucional (UCA)instname:Pontificia Universidad Católica Argentinaenginfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/2025-07-03T10:56:54Zoai:ucacris:123456789/8746instacron:UCAInstitucionalhttps://repositorio.uca.edu.ar/Universidad privadaNo correspondehttps://repositorio.uca.edu.ar/oaiclaudia_fernandez@uca.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:25852025-07-03 10:56:55.161Repositorio Institucional (UCA) - Pontificia Universidad Católica Argentinafalse
dc.title.none.fl_str_mv TRPC3-GEF-H1 axis mediates pressure overload-induced cardiac fibrosis
title TRPC3-GEF-H1 axis mediates pressure overload-induced cardiac fibrosis
spellingShingle TRPC3-GEF-H1 axis mediates pressure overload-induced cardiac fibrosis
Numaga-Tomita, Takuro
FIBROSIS
CORAZON
CRECIMIENTO
CELULAS
title_short TRPC3-GEF-H1 axis mediates pressure overload-induced cardiac fibrosis
title_full TRPC3-GEF-H1 axis mediates pressure overload-induced cardiac fibrosis
title_fullStr TRPC3-GEF-H1 axis mediates pressure overload-induced cardiac fibrosis
title_full_unstemmed TRPC3-GEF-H1 axis mediates pressure overload-induced cardiac fibrosis
title_sort TRPC3-GEF-H1 axis mediates pressure overload-induced cardiac fibrosis
dc.creator.none.fl_str_mv Numaga-Tomita, Takuro
Kitajima, Naoyuki
Kuroda, Takuya
Nishimura, Akiyuki
Miyano, Kei
Yasuda, Satoshi
Kuwahara, Koichiro
Sato, Yoji
Ide, Tomomi
Birnbaumer, Lutz
Sumimoto, Hideki
Mori, Yasuo
Nishida, Motohiro
author Numaga-Tomita, Takuro
author_facet Numaga-Tomita, Takuro
Kitajima, Naoyuki
Kuroda, Takuya
Nishimura, Akiyuki
Miyano, Kei
Yasuda, Satoshi
Kuwahara, Koichiro
Sato, Yoji
Ide, Tomomi
Birnbaumer, Lutz
Sumimoto, Hideki
Mori, Yasuo
Nishida, Motohiro
author_role author
author2 Kitajima, Naoyuki
Kuroda, Takuya
Nishimura, Akiyuki
Miyano, Kei
Yasuda, Satoshi
Kuwahara, Koichiro
Sato, Yoji
Ide, Tomomi
Birnbaumer, Lutz
Sumimoto, Hideki
Mori, Yasuo
Nishida, Motohiro
author2_role author
author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv FIBROSIS
CORAZON
CRECIMIENTO
CELULAS
topic FIBROSIS
CORAZON
CRECIMIENTO
CELULAS
dc.description.none.fl_txt_mv Fil: Numaga-Tomita, Takuro. National Institute for Physiological Sciences. Okazaki Institute for Integrative Bioscience. Division of Cardiocirculatory Signaling; Japón
Fil: Numaga-Tomita, Takuro. The Graduate University for Advanced Studies. School of Life Science. Department of Physiological Sciences; Japón
Fil: Kitajima, Naoyuki. National Institute for Physiological Sciences. Okazaki Institute for Integrative Bioscience. Division of Cardiocirculatory Signaling; Japón
Fil: Kitajima, Naoyuki. Kyushu University. Graduate School of Pharmaceutical Sciences. Department of Translational Pharmaceutical Sciences; Japón
Fil: Kuroda, Takuya. National Institute of Health Sciences. Division of Cell-Based Therapeutic Products; Japón
Fil: Nishimura, Akiyuki. National Institute for Physiological Sciences. Okazaki Institute for Integrative Bioscience. Division of Cardiocirculatory Signaling; Japón
Fil: Nishimura, Akiyuki. The Graduate University for Advanced Studies. School of Life Science. Department of Physiological Sciences; Japón
Fil: Miyano, Kei. Kyushu University. Graduate School of Medical Sciences. Department of Biochemistry; Japón
Fil: Yasuda, Satoshi. National Institute of Health Sciences. Division of Cell-Based Therapeutic Products; Japón
Fil: Kuwahara, Koichiro. Shinshu University. School of Medicine. Department of Cardiovascular Medicine; Japón
Fil: Sato, Yoji. Kyushu University. Graduate School of Pharmaceutical Sciences. Department of Translational Pharmaceutical Sciences; Japón
Fil: Sato, Yoji. National Institute of Health Sciences. Division of Cell-Based Therapeutic Products; Japón
Fil: Ide, Tomomi. Kyushu University. Graduate School of Medical Sciences. Department of Cardiovascular Medicine; Argentina
Fil: Birnbaumer, Lutz. Pontificia Universidad Católica Argentina. Facultad de Ciencias Médicas. Instituto de Investigaciones Biomédicas; Argentina
Fil: Birnbaumer, Lutz. National Institute of Environmental Health Sciences. Neurobiology Laboratory; Estados Unidos
Fil: Sumimoto, Hideki. Kyushu University. Graduate School of Medical Sciences. Department of Biochemistry; Japón
Fil: Mori, Yasuo. Kyoto University. Graduate School of Engineering. Department of Synthetic Chemistry and Biological Chemistry; Japón
Fil: Nishida, Motohiro. National Institute for Physiological Sciences. Okazaki Institute for Integrative Bioscience. Division of Cardiocirculatory Signaling; Japón
Fil: Nishida, Motohiro. The Graduate University for Advanced Studies. School of Life Science. Department of Physiological Sciences; Japón
Fil: Nishida, Motohiro. Kyushu University. Graduate School of Pharmaceutical Sciences. Department of Translational Pharmaceutical Sciences; Japón
Fil: Nishida, Motohiro. Precursory Research for Embryonic Science and Technology; Japón
Abstract: Structural cardiac remodeling, accompanying cytoskeletal reorganization of cardiac cells, is a major clinical outcome of diastolic heart failure. A highly local Ca2+ influx across the plasma membrane has been suggested to code signals to induce Rho GTPase-mediated fibrosis, but it is obscure how the heart specifically decodes the local Ca2+ influx as a cytoskeletal reorganizing signal under the conditions of the rhythmic Ca2+ handling required for pump function. We found that an inhibition of transient receptor potential canonical 3 (TRPC3) channel activity exhibited resistance to Rho-mediated maladaptive fibrosis in pressure-overloaded mouse hearts. Proteomic analysis revealed that microtubule-associated Rho guanine nucleotide exchange factor, GEF-H1, participates in TRPC3-mediated RhoA activation induced by mechanical stress in cardiomyocytes and transforming growth factor (TGF) β stimulation in cardiac fibroblasts. We previously revealed that TRPC3 functionally interacts with microtubule-associated NADPH oxidase (Nox) 2, and inhibition of Nox2 attenuated mechanical stretch-induced GEF-H1 activation in cardiomyocytes. Finally, pharmacological TRPC3 inhibition significantly suppressed fibrotic responses in human cardiomyocytes and cardiac fibroblasts. These results strongly suggest that microtubule-localized TRPC3-GEF-H1 axis mediates fibrotic responses commonly in cardiac myocytes and fibroblasts induced by physico-chemical stimulation.
description Fil: Numaga-Tomita, Takuro. National Institute for Physiological Sciences. Okazaki Institute for Integrative Bioscience. Division of Cardiocirculatory Signaling; Japón
publishDate 2016
dc.date.none.fl_str_mv 2016
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://repositorio.uca.edu.ar/handle/123456789/8746
2045-2322
10.1038/srep39383
27991560
Numaga-Tomita T, Kitajima N, Kuroda T, et al. TRPC3-GEF-H1 axis mediates pressure overload-induced cardiac fibrosis [en línea]. Scientific Reports. 2016;6:39383. doi:10.1038/srep39383 Disponible en: https://repositorio.uca.edu.ar/handle/123456789/8746
url https://repositorio.uca.edu.ar/handle/123456789/8746
identifier_str_mv 2045-2322
10.1038/srep39383
27991560
Numaga-Tomita T, Kitajima N, Kuroda T, et al. TRPC3-GEF-H1 axis mediates pressure overload-induced cardiac fibrosis [en línea]. Scientific Reports. 2016;6:39383. doi:10.1038/srep39383 Disponible en: https://repositorio.uca.edu.ar/handle/123456789/8746
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Nature Research
publisher.none.fl_str_mv Nature Research
dc.source.none.fl_str_mv Scientific Reports. 2016;6:39383
reponame:Repositorio Institucional (UCA)
instname:Pontificia Universidad Católica Argentina
reponame_str Repositorio Institucional (UCA)
collection Repositorio Institucional (UCA)
instname_str Pontificia Universidad Católica Argentina
repository.name.fl_str_mv Repositorio Institucional (UCA) - Pontificia Universidad Católica Argentina
repository.mail.fl_str_mv claudia_fernandez@uca.edu.ar
_version_ 1836638347759452160
score 13.001348