Normal development of spinal axons in early embryo stages and posterior locomotor function is independent of GAL-1

Autores
Pasquini, Juana M.; Barrantes, Francisco José; Quintá, Héctor R.
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Fil: Pasquini, Juana M. Universidad de Buenos Aires. Instituto de Química y Físico Química Biológica. Departamento de Química Biológica; Argentina
Fil: Barrantes, Francisco J. Pontificia Universidad Católica Argentina. Facultad de Ciencias Médicas. Instituto de Investigaciones Biomédicas. Laboratorio de Neurobiología Molecular; Argentina
Fil: Barrantes, Francisco J. Pontificia Universidad Católica Argentina. Facultad de Ciencias Médicas. Instituto de Investigaciones Biomédicas. Laboratorio de Neurbiología Molecular; Argentina
Fil: Quintá, Héctor R. Universidad de Buenos Aires. Instituto de Química y Físico Química Biológica. Departamento de Química Biológica; Argentina
Abstract: It was recently described that Galectin-1 (Gal-1) promotes axonal growth after spinal cord injury. This effect depends on protein dimerization, since monomeric Gal-1 fails to stimulate axonal re-growth. Gal-1 is expressed in vivo at concentrations that favor the monomeric species. The aim of the present study is to investigate whether endogenous Gal-1 is required for spinal axon development and normal locomotor behavior in mice. In order to characterize axonal development, we used a novel combination of 3-DISCO technique with 1-photon microscopy and epifluorescence microscopy under high power LED illumination, followed by serial image section deconvolution and 3-D reconstruction. Cleared whole lgals-1 -/- embryos were used to analyze the 3-D cytoarchitecture of motor, commissural, and sensory axons. This approach allowed us to evaluate axonal development, including the number of fibers, fluorescence density of the fiber tracts, fiber length as well as the morphology of axonal sprouting, deep within the tissue. Gal-1 deficient embryos did not show morphological/anatomical alterations in any of the axonal populations and parameters analyzed. In addition, specific guidance receptor PlexinA4 did not change its axonal localization in the absence of Gal-1. Finally, Gal-1 deficiency did not change normal locomotor activity in post-natal animals. Taken together, our results show that development of spinal axons as well as the locomotor abilities observed in adult mice are independent of Gal-1. Supporting our previous observations, the present study further validates the use of lgals-1 -/- mice to develop spinal cord- or traumatic brain injury models for the evaluation of the regenerative action of Gal-1.
Fuente
Journal of Comparative Neurology. 2017, 525 (13)
Materia
PROTEINAS
MEDULA ESPINAL
DESARROLLO EMBRIONARIO
FUNCIONES MOTORAS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
Repositorio Institucional (UCA)
Institución
Pontificia Universidad Católica Argentina
OAI Identificador
oai:ucacris:123456789/8530

id RIUCA_cbbc74d18bda950d3faee5be3f9bff0d
oai_identifier_str oai:ucacris:123456789/8530
network_acronym_str RIUCA
repository_id_str 2585
network_name_str Repositorio Institucional (UCA)
spelling Normal development of spinal axons in early embryo stages and posterior locomotor function is independent of GAL-1Pasquini, Juana M.Barrantes, Francisco JoséQuintá, Héctor R.PROTEINASMEDULA ESPINALDESARROLLO EMBRIONARIOFUNCIONES MOTORASFil: Pasquini, Juana M. Universidad de Buenos Aires. Instituto de Química y Físico Química Biológica. Departamento de Química Biológica; ArgentinaFil: Barrantes, Francisco J. Pontificia Universidad Católica Argentina. Facultad de Ciencias Médicas. Instituto de Investigaciones Biomédicas. Laboratorio de Neurobiología Molecular; ArgentinaFil: Barrantes, Francisco J. Pontificia Universidad Católica Argentina. Facultad de Ciencias Médicas. Instituto de Investigaciones Biomédicas. Laboratorio de Neurbiología Molecular; ArgentinaFil: Quintá, Héctor R. Universidad de Buenos Aires. Instituto de Química y Físico Química Biológica. Departamento de Química Biológica; ArgentinaAbstract: It was recently described that Galectin-1 (Gal-1) promotes axonal growth after spinal cord injury. This effect depends on protein dimerization, since monomeric Gal-1 fails to stimulate axonal re-growth. Gal-1 is expressed in vivo at concentrations that favor the monomeric species. The aim of the present study is to investigate whether endogenous Gal-1 is required for spinal axon development and normal locomotor behavior in mice. In order to characterize axonal development, we used a novel combination of 3-DISCO technique with 1-photon microscopy and epifluorescence microscopy under high power LED illumination, followed by serial image section deconvolution and 3-D reconstruction. Cleared whole lgals-1 -/- embryos were used to analyze the 3-D cytoarchitecture of motor, commissural, and sensory axons. This approach allowed us to evaluate axonal development, including the number of fibers, fluorescence density of the fiber tracts, fiber length as well as the morphology of axonal sprouting, deep within the tissue. Gal-1 deficient embryos did not show morphological/anatomical alterations in any of the axonal populations and parameters analyzed. In addition, specific guidance receptor PlexinA4 did not change its axonal localization in the absence of Gal-1. Finally, Gal-1 deficiency did not change normal locomotor activity in post-natal animals. Taken together, our results show that development of spinal axons as well as the locomotor abilities observed in adult mice are independent of Gal-1. Supporting our previous observations, the present study further validates the use of lgals-1 -/- mice to develop spinal cord- or traumatic brain injury models for the evaluation of the regenerative action of Gal-1.Wiley2017info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttps://repositorio.uca.edu.ar/handle/123456789/85301096-9861 (online)0021-9967 (Impreso)10.1002/cne.24243Pasquini, J. M., Barrantes, F. J, Quintá, H. R. Normal development of spinal axons in early embryo stages and posterior locomotor function is independent of GAL-1 [en línea]. Journal of Comparative Neurology. 2017, 525 (13). doi:10.1002/cne.24243. Disponible en: https://repositorio.uca.edu.ar/handle/123456789/8530Journal of Comparative Neurology. 2017, 525 (13)reponame:Repositorio Institucional (UCA)instname:Pontificia Universidad Católica Argentinaenginfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/2025-07-03T10:56:52Zoai:ucacris:123456789/8530instacron:UCAInstitucionalhttps://repositorio.uca.edu.ar/Universidad privadaNo correspondehttps://repositorio.uca.edu.ar/oaiclaudia_fernandez@uca.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:25852025-07-03 10:56:52.377Repositorio Institucional (UCA) - Pontificia Universidad Católica Argentinafalse
dc.title.none.fl_str_mv Normal development of spinal axons in early embryo stages and posterior locomotor function is independent of GAL-1
title Normal development of spinal axons in early embryo stages and posterior locomotor function is independent of GAL-1
spellingShingle Normal development of spinal axons in early embryo stages and posterior locomotor function is independent of GAL-1
Pasquini, Juana M.
PROTEINAS
MEDULA ESPINAL
DESARROLLO EMBRIONARIO
FUNCIONES MOTORAS
title_short Normal development of spinal axons in early embryo stages and posterior locomotor function is independent of GAL-1
title_full Normal development of spinal axons in early embryo stages and posterior locomotor function is independent of GAL-1
title_fullStr Normal development of spinal axons in early embryo stages and posterior locomotor function is independent of GAL-1
title_full_unstemmed Normal development of spinal axons in early embryo stages and posterior locomotor function is independent of GAL-1
title_sort Normal development of spinal axons in early embryo stages and posterior locomotor function is independent of GAL-1
dc.creator.none.fl_str_mv Pasquini, Juana M.
Barrantes, Francisco José
Quintá, Héctor R.
author Pasquini, Juana M.
author_facet Pasquini, Juana M.
Barrantes, Francisco José
Quintá, Héctor R.
author_role author
author2 Barrantes, Francisco José
Quintá, Héctor R.
author2_role author
author
dc.subject.none.fl_str_mv PROTEINAS
MEDULA ESPINAL
DESARROLLO EMBRIONARIO
FUNCIONES MOTORAS
topic PROTEINAS
MEDULA ESPINAL
DESARROLLO EMBRIONARIO
FUNCIONES MOTORAS
dc.description.none.fl_txt_mv Fil: Pasquini, Juana M. Universidad de Buenos Aires. Instituto de Química y Físico Química Biológica. Departamento de Química Biológica; Argentina
Fil: Barrantes, Francisco J. Pontificia Universidad Católica Argentina. Facultad de Ciencias Médicas. Instituto de Investigaciones Biomédicas. Laboratorio de Neurobiología Molecular; Argentina
Fil: Barrantes, Francisco J. Pontificia Universidad Católica Argentina. Facultad de Ciencias Médicas. Instituto de Investigaciones Biomédicas. Laboratorio de Neurbiología Molecular; Argentina
Fil: Quintá, Héctor R. Universidad de Buenos Aires. Instituto de Química y Físico Química Biológica. Departamento de Química Biológica; Argentina
Abstract: It was recently described that Galectin-1 (Gal-1) promotes axonal growth after spinal cord injury. This effect depends on protein dimerization, since monomeric Gal-1 fails to stimulate axonal re-growth. Gal-1 is expressed in vivo at concentrations that favor the monomeric species. The aim of the present study is to investigate whether endogenous Gal-1 is required for spinal axon development and normal locomotor behavior in mice. In order to characterize axonal development, we used a novel combination of 3-DISCO technique with 1-photon microscopy and epifluorescence microscopy under high power LED illumination, followed by serial image section deconvolution and 3-D reconstruction. Cleared whole lgals-1 -/- embryos were used to analyze the 3-D cytoarchitecture of motor, commissural, and sensory axons. This approach allowed us to evaluate axonal development, including the number of fibers, fluorescence density of the fiber tracts, fiber length as well as the morphology of axonal sprouting, deep within the tissue. Gal-1 deficient embryos did not show morphological/anatomical alterations in any of the axonal populations and parameters analyzed. In addition, specific guidance receptor PlexinA4 did not change its axonal localization in the absence of Gal-1. Finally, Gal-1 deficiency did not change normal locomotor activity in post-natal animals. Taken together, our results show that development of spinal axons as well as the locomotor abilities observed in adult mice are independent of Gal-1. Supporting our previous observations, the present study further validates the use of lgals-1 -/- mice to develop spinal cord- or traumatic brain injury models for the evaluation of the regenerative action of Gal-1.
description Fil: Pasquini, Juana M. Universidad de Buenos Aires. Instituto de Química y Físico Química Biológica. Departamento de Química Biológica; Argentina
publishDate 2017
dc.date.none.fl_str_mv 2017
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://repositorio.uca.edu.ar/handle/123456789/8530
1096-9861 (online)
0021-9967 (Impreso)
10.1002/cne.24243
Pasquini, J. M., Barrantes, F. J, Quintá, H. R. Normal development of spinal axons in early embryo stages and posterior locomotor function is independent of GAL-1 [en línea]. Journal of Comparative Neurology. 2017, 525 (13). doi:10.1002/cne.24243. Disponible en: https://repositorio.uca.edu.ar/handle/123456789/8530
url https://repositorio.uca.edu.ar/handle/123456789/8530
identifier_str_mv 1096-9861 (online)
0021-9967 (Impreso)
10.1002/cne.24243
Pasquini, J. M., Barrantes, F. J, Quintá, H. R. Normal development of spinal axons in early embryo stages and posterior locomotor function is independent of GAL-1 [en línea]. Journal of Comparative Neurology. 2017, 525 (13). doi:10.1002/cne.24243. Disponible en: https://repositorio.uca.edu.ar/handle/123456789/8530
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Wiley
publisher.none.fl_str_mv Wiley
dc.source.none.fl_str_mv Journal of Comparative Neurology. 2017, 525 (13)
reponame:Repositorio Institucional (UCA)
instname:Pontificia Universidad Católica Argentina
reponame_str Repositorio Institucional (UCA)
collection Repositorio Institucional (UCA)
instname_str Pontificia Universidad Católica Argentina
repository.name.fl_str_mv Repositorio Institucional (UCA) - Pontificia Universidad Católica Argentina
repository.mail.fl_str_mv claudia_fernandez@uca.edu.ar
_version_ 1836638347110383616
score 13.13397