A 4D feature-tracking algorithm : a multidimensional view of cyclone systems
- Autores
- Lakkis, Susan Gabriela; Canziani, Pablo O.; Rocamora, Leandro; Caferri, Agustin; Yuchechen, Adrián; Hodges, Kevin; O'Neill, Alan
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión aceptada
- Descripción
- Fil: Lakkis, Susan Gabriela. Pontificia Universidad Católica Argentina, Facultad de Ingeniería y Ciencias Agrarias; Argentina
Fil: Lakkis, Susan Gabriela. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires. Unidad de Investigación y Desarrollo de las Ingenierías; Argentina
Fil: Canziani, Pablo. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires. Unidad de Investigación y Desarrollo de las Ingenierías; Argentina
Fil: Canziani, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Rocamora, Leandro. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires. Unidad de Investigación y Desarrollo de las Ingenierías; Argentina
Fil: Caferri, Agustin. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires. Unidad de Investigación y Desarrollo de las Ingenierías; Argentina
Fil: Yuchechen, Adrián. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires. Unidad de Investigación y Desarrollo de las Ingenierías; Argentina
Fil: Yuchechen, Adrián. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Hodges, Kevin. University of Reading. Department of Meteorology; Reino Unido
Fil: O'Neill, Alan. University of Reading. Department of Meteorology; Reino Unido
Abstrac: An objective four-dimensional (4D) algorithm developed to track extratropical relative vorticity anomaly 3D structure over time is introduced and validated. The STACKER algorithm, structured with the TRACKER single-level tracking algorithm as source of the single-level raw tracks, objectively combines tracks from various levels to determine the 3D structure of the cyclone (or anticyclone) events throughout their life cycle. STACKER works progressively, beginning with two initial levels and then adding additional levels to the stack in a bottom-up and/or top-down approach. This allows an iterative stacking approach, adding one level at a time, resulting in an optimized 4D determination of relative vorticity anomaly events. A two-stage validation process is carried out with the ECMWF reanalysis ERA-Interim dataset for the 2015 austral winter. First the overall tracking capability during an austral winter, taking into account a set of climate indicators and their impacts on Southern Hemisphere circulation, was compared to previous climatologies, in order to verify the density and distribution of the cyclone events detected by STACKER. Results show the cyclone density distribution is in very good agreement with previous climatologies, after taking into account potential differences due to climate variability and different tracking methodologies. The second stage focuses on three different long-lived events over the Southern Hemisphere during the winter of 2015, spanning seven different pressure levels. Both GOES satellite imagery, infrared and water vapour channels, and ERA-Interim cloud cover products are used in order to validate the tracks obtained as well as the algorithm’s capability and reliability. The observed 3D cyclone structures and their time evolution are consistent with current understanding of cyclone system development. Thus, the two-stage validation confirms that the algorithm is suitable to track multilevel events, and can follow and analyse their 3D life cycle and develop full 3D climatologies and climate variability studies. - Fuente
- Postprint del artículo publicado en Quarterly Journal of the Royal Meteorological Society. vol.145, no.719, 2018
- Materia
-
PROGRAMACION DINAMICA
ALGORITMOS
CLIMATOLOGIA
CICLONES
METEREOLOGIA - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Pontificia Universidad Católica Argentina
- OAI Identificador
- oai:ucacris:123456789/9007
Ver los metadatos del registro completo
id |
RIUCA_c7b9bac7a321bb75f14948395e31f223 |
---|---|
oai_identifier_str |
oai:ucacris:123456789/9007 |
network_acronym_str |
RIUCA |
repository_id_str |
2585 |
network_name_str |
Repositorio Institucional (UCA) |
spelling |
A 4D feature-tracking algorithm : a multidimensional view of cyclone systemsLakkis, Susan GabrielaCanziani, Pablo O.Rocamora, LeandroCaferri, AgustinYuchechen, AdriánHodges, KevinO'Neill, AlanPROGRAMACION DINAMICAALGORITMOSCLIMATOLOGIACICLONESMETEREOLOGIAFil: Lakkis, Susan Gabriela. Pontificia Universidad Católica Argentina, Facultad de Ingeniería y Ciencias Agrarias; ArgentinaFil: Lakkis, Susan Gabriela. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires. Unidad de Investigación y Desarrollo de las Ingenierías; ArgentinaFil: Canziani, Pablo. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires. Unidad de Investigación y Desarrollo de las Ingenierías; ArgentinaFil: Canziani, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Rocamora, Leandro. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires. Unidad de Investigación y Desarrollo de las Ingenierías; ArgentinaFil: Caferri, Agustin. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires. Unidad de Investigación y Desarrollo de las Ingenierías; ArgentinaFil: Yuchechen, Adrián. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires. Unidad de Investigación y Desarrollo de las Ingenierías; ArgentinaFil: Yuchechen, Adrián. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Hodges, Kevin. University of Reading. Department of Meteorology; Reino UnidoFil: O'Neill, Alan. University of Reading. Department of Meteorology; Reino UnidoAbstrac: An objective four-dimensional (4D) algorithm developed to track extratropical relative vorticity anomaly 3D structure over time is introduced and validated. The STACKER algorithm, structured with the TRACKER single-level tracking algorithm as source of the single-level raw tracks, objectively combines tracks from various levels to determine the 3D structure of the cyclone (or anticyclone) events throughout their life cycle. STACKER works progressively, beginning with two initial levels and then adding additional levels to the stack in a bottom-up and/or top-down approach. This allows an iterative stacking approach, adding one level at a time, resulting in an optimized 4D determination of relative vorticity anomaly events. A two-stage validation process is carried out with the ECMWF reanalysis ERA-Interim dataset for the 2015 austral winter. First the overall tracking capability during an austral winter, taking into account a set of climate indicators and their impacts on Southern Hemisphere circulation, was compared to previous climatologies, in order to verify the density and distribution of the cyclone events detected by STACKER. Results show the cyclone density distribution is in very good agreement with previous climatologies, after taking into account potential differences due to climate variability and different tracking methodologies. The second stage focuses on three different long-lived events over the Southern Hemisphere during the winter of 2015, spanning seven different pressure levels. Both GOES satellite imagery, infrared and water vapour channels, and ERA-Interim cloud cover products are used in order to validate the tracks obtained as well as the algorithm’s capability and reliability. The observed 3D cyclone structures and their time evolution are consistent with current understanding of cyclone system development. Thus, the two-stage validation confirms that the algorithm is suitable to track multilevel events, and can follow and analyse their 3D life cycle and develop full 3D climatologies and climate variability studies.John Wiley & Sons2018info:eu-repo/semantics/articleinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttps://repositorio.uca.edu.ar/handle/123456789/90071477-870X10.1002/qj.3436Lakkis, S G. Canziani, P. Rocamora, L. Caferri, A. Yuchechen, A. Hodges, K. O'Neill, A. A 4D feature-tracking algorithm : A multidimensional view of cyclone systems [en línea]. Postprint del artículo publicado en Quarterly Journal of the Royal Meteorological Society. 2018, 145 (719). doy: 10.1002/qj.3436. Diponible en: https://repositorio.uca.edu.ar/handle/123456789/9007Postprint del artículo publicado en Quarterly Journal of the Royal Meteorological Society. vol.145, no.719, 2018reponame:Repositorio Institucional (UCA)instname:Pontificia Universidad Católica Argentinaenginfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/2025-07-03T10:56:58Zoai:ucacris:123456789/9007instacron:UCAInstitucionalhttps://repositorio.uca.edu.ar/Universidad privadaNo correspondehttps://repositorio.uca.edu.ar/oaiclaudia_fernandez@uca.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:25852025-07-03 10:56:59.143Repositorio Institucional (UCA) - Pontificia Universidad Católica Argentinafalse |
dc.title.none.fl_str_mv |
A 4D feature-tracking algorithm : a multidimensional view of cyclone systems |
title |
A 4D feature-tracking algorithm : a multidimensional view of cyclone systems |
spellingShingle |
A 4D feature-tracking algorithm : a multidimensional view of cyclone systems Lakkis, Susan Gabriela PROGRAMACION DINAMICA ALGORITMOS CLIMATOLOGIA CICLONES METEREOLOGIA |
title_short |
A 4D feature-tracking algorithm : a multidimensional view of cyclone systems |
title_full |
A 4D feature-tracking algorithm : a multidimensional view of cyclone systems |
title_fullStr |
A 4D feature-tracking algorithm : a multidimensional view of cyclone systems |
title_full_unstemmed |
A 4D feature-tracking algorithm : a multidimensional view of cyclone systems |
title_sort |
A 4D feature-tracking algorithm : a multidimensional view of cyclone systems |
dc.creator.none.fl_str_mv |
Lakkis, Susan Gabriela Canziani, Pablo O. Rocamora, Leandro Caferri, Agustin Yuchechen, Adrián Hodges, Kevin O'Neill, Alan |
author |
Lakkis, Susan Gabriela |
author_facet |
Lakkis, Susan Gabriela Canziani, Pablo O. Rocamora, Leandro Caferri, Agustin Yuchechen, Adrián Hodges, Kevin O'Neill, Alan |
author_role |
author |
author2 |
Canziani, Pablo O. Rocamora, Leandro Caferri, Agustin Yuchechen, Adrián Hodges, Kevin O'Neill, Alan |
author2_role |
author author author author author author |
dc.subject.none.fl_str_mv |
PROGRAMACION DINAMICA ALGORITMOS CLIMATOLOGIA CICLONES METEREOLOGIA |
topic |
PROGRAMACION DINAMICA ALGORITMOS CLIMATOLOGIA CICLONES METEREOLOGIA |
dc.description.none.fl_txt_mv |
Fil: Lakkis, Susan Gabriela. Pontificia Universidad Católica Argentina, Facultad de Ingeniería y Ciencias Agrarias; Argentina Fil: Lakkis, Susan Gabriela. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires. Unidad de Investigación y Desarrollo de las Ingenierías; Argentina Fil: Canziani, Pablo. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires. Unidad de Investigación y Desarrollo de las Ingenierías; Argentina Fil: Canziani, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Rocamora, Leandro. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires. Unidad de Investigación y Desarrollo de las Ingenierías; Argentina Fil: Caferri, Agustin. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires. Unidad de Investigación y Desarrollo de las Ingenierías; Argentina Fil: Yuchechen, Adrián. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires. Unidad de Investigación y Desarrollo de las Ingenierías; Argentina Fil: Yuchechen, Adrián. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Hodges, Kevin. University of Reading. Department of Meteorology; Reino Unido Fil: O'Neill, Alan. University of Reading. Department of Meteorology; Reino Unido Abstrac: An objective four-dimensional (4D) algorithm developed to track extratropical relative vorticity anomaly 3D structure over time is introduced and validated. The STACKER algorithm, structured with the TRACKER single-level tracking algorithm as source of the single-level raw tracks, objectively combines tracks from various levels to determine the 3D structure of the cyclone (or anticyclone) events throughout their life cycle. STACKER works progressively, beginning with two initial levels and then adding additional levels to the stack in a bottom-up and/or top-down approach. This allows an iterative stacking approach, adding one level at a time, resulting in an optimized 4D determination of relative vorticity anomaly events. A two-stage validation process is carried out with the ECMWF reanalysis ERA-Interim dataset for the 2015 austral winter. First the overall tracking capability during an austral winter, taking into account a set of climate indicators and their impacts on Southern Hemisphere circulation, was compared to previous climatologies, in order to verify the density and distribution of the cyclone events detected by STACKER. Results show the cyclone density distribution is in very good agreement with previous climatologies, after taking into account potential differences due to climate variability and different tracking methodologies. The second stage focuses on three different long-lived events over the Southern Hemisphere during the winter of 2015, spanning seven different pressure levels. Both GOES satellite imagery, infrared and water vapour channels, and ERA-Interim cloud cover products are used in order to validate the tracks obtained as well as the algorithm’s capability and reliability. The observed 3D cyclone structures and their time evolution are consistent with current understanding of cyclone system development. Thus, the two-stage validation confirms that the algorithm is suitable to track multilevel events, and can follow and analyse their 3D life cycle and develop full 3D climatologies and climate variability studies. |
description |
Fil: Lakkis, Susan Gabriela. Pontificia Universidad Católica Argentina, Facultad de Ingeniería y Ciencias Agrarias; Argentina |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/acceptedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
acceptedVersion |
dc.identifier.none.fl_str_mv |
https://repositorio.uca.edu.ar/handle/123456789/9007 1477-870X 10.1002/qj.3436 Lakkis, S G. Canziani, P. Rocamora, L. Caferri, A. Yuchechen, A. Hodges, K. O'Neill, A. A 4D feature-tracking algorithm : A multidimensional view of cyclone systems [en línea]. Postprint del artículo publicado en Quarterly Journal of the Royal Meteorological Society. 2018, 145 (719). doy: 10.1002/qj.3436. Diponible en: https://repositorio.uca.edu.ar/handle/123456789/9007 |
url |
https://repositorio.uca.edu.ar/handle/123456789/9007 |
identifier_str_mv |
1477-870X 10.1002/qj.3436 Lakkis, S G. Canziani, P. Rocamora, L. Caferri, A. Yuchechen, A. Hodges, K. O'Neill, A. A 4D feature-tracking algorithm : A multidimensional view of cyclone systems [en línea]. Postprint del artículo publicado en Quarterly Journal of the Royal Meteorological Society. 2018, 145 (719). doy: 10.1002/qj.3436. Diponible en: https://repositorio.uca.edu.ar/handle/123456789/9007 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
John Wiley & Sons |
publisher.none.fl_str_mv |
John Wiley & Sons |
dc.source.none.fl_str_mv |
Postprint del artículo publicado en Quarterly Journal of the Royal Meteorological Society. vol.145, no.719, 2018 reponame:Repositorio Institucional (UCA) instname:Pontificia Universidad Católica Argentina |
reponame_str |
Repositorio Institucional (UCA) |
collection |
Repositorio Institucional (UCA) |
instname_str |
Pontificia Universidad Católica Argentina |
repository.name.fl_str_mv |
Repositorio Institucional (UCA) - Pontificia Universidad Católica Argentina |
repository.mail.fl_str_mv |
claudia_fernandez@uca.edu.ar |
_version_ |
1836638348460949504 |
score |
13.13397 |