Quality of service assesment using machine learning techniques for the NETCONF protocol
- Autores
- Ouret, Javier A.; Parravicini, Ignacio
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Fil: Ouret, Javier A. Pontificia Universidad Católica Argentina. Facultad de Ingeniería; Argentina
Fil: Parravicini, Ignacio. Pontificia Universidad Católica Argentina. Facultad de Ingeniería; Argentina
Abstract: Study of an unsupervised machine learning approach for the testing results defined by the RFC2544 - ITU.Y1564 standard methodologies and the use of NETCONF protocol to automatically assess traffic parameters required to comply with quality of service level agreements. By doing disruptive and non-disruptive tests for service integrity, a service provider can certify that the working parameters of a delivered Ethernet circuit complies with the end user expectations, to avoid poor application performance. This work focus in an unsupervised learning approach using Expectation Maximization based clustering algorithm. We find that the unsupervised technique used is an excellent tool for exploring and classify service parameters like frame delay, frame delay variation, packet high loss intervals, availability and throughput. A correlation of parameters with the type of service required for the network flows (real time IP for data, video and voice applications) can be applied to automatically set bandwidth profiles. The bandwidth profiles can be configured per port, VLAN and CoS based, in one or multiple EVCs (Ethernet Virtual Circuits) per UNI device port. For the setup we adopt the Yang data modeling language and XML NETCONF message encoding protocol, followed by a delayed or an optional non-delayed orchestrated activation in the network devices via multiple NETCONF transactions. - Fuente
- II Congreso Argentino de Ciencias de la Informática y Desarrollos de Investigación (CACIDI): 28 a 30 de noviembre. Buenos Aires: Universidad CAECE, 2018
- Materia
-
PROTOCOLOS
APRENDIZAJE AUTOMÁTICO
MODELO DE DATOS
REDES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Pontificia Universidad Católica Argentina
- OAI Identificador
- oai:ucacris:123456789/14751
Ver los metadatos del registro completo
id |
RIUCA_bba920ff217df8e5ed514e971396ac29 |
---|---|
oai_identifier_str |
oai:ucacris:123456789/14751 |
network_acronym_str |
RIUCA |
repository_id_str |
2585 |
network_name_str |
Repositorio Institucional (UCA) |
spelling |
Quality of service assesment using machine learning techniques for the NETCONF protocolOuret, Javier A.Parravicini, IgnacioPROTOCOLOSAPRENDIZAJE AUTOMÁTICOMODELO DE DATOSREDESFil: Ouret, Javier A. Pontificia Universidad Católica Argentina. Facultad de Ingeniería; ArgentinaFil: Parravicini, Ignacio. Pontificia Universidad Católica Argentina. Facultad de Ingeniería; ArgentinaAbstract: Study of an unsupervised machine learning approach for the testing results defined by the RFC2544 - ITU.Y1564 standard methodologies and the use of NETCONF protocol to automatically assess traffic parameters required to comply with quality of service level agreements. By doing disruptive and non-disruptive tests for service integrity, a service provider can certify that the working parameters of a delivered Ethernet circuit complies with the end user expectations, to avoid poor application performance. This work focus in an unsupervised learning approach using Expectation Maximization based clustering algorithm. We find that the unsupervised technique used is an excellent tool for exploring and classify service parameters like frame delay, frame delay variation, packet high loss intervals, availability and throughput. A correlation of parameters with the type of service required for the network flows (real time IP for data, video and voice applications) can be applied to automatically set bandwidth profiles. The bandwidth profiles can be configured per port, VLAN and CoS based, in one or multiple EVCs (Ethernet Virtual Circuits) per UNI device port. For the setup we adopt the Yang data modeling language and XML NETCONF message encoding protocol, followed by a delayed or an optional non-delayed orchestrated activation in the network devices via multiple NETCONF transactions.IEE Explore2018info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttps://repositorio.uca.edu.ar/handle/123456789/14751978-1-5386-5447-710.1109/CACIDI.2018.8584342Ouret, J. A., Parravicini, I. Quality of service assesment using machine learning techniques for the NETCONF protocol [en línea]. En: II Congreso Argentino de Ciencias de la Informática y Desarrollos de Investigación (CACIDI): 28 a 30 de noviembre. Buenos Aires: Universidad CAECE, 2018. Disponible en: https://repositorio.uca.edu.ar/handle/123456789/14751II Congreso Argentino de Ciencias de la Informática y Desarrollos de Investigación (CACIDI): 28 a 30 de noviembre. Buenos Aires: Universidad CAECE, 2018reponame:Repositorio Institucional (UCA)instname:Pontificia Universidad Católica Argentinaenginfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/2025-07-03T10:58:46Zoai:ucacris:123456789/14751instacron:UCAInstitucionalhttps://repositorio.uca.edu.ar/Universidad privadaNo correspondehttps://repositorio.uca.edu.ar/oaiclaudia_fernandez@uca.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:25852025-07-03 10:58:46.833Repositorio Institucional (UCA) - Pontificia Universidad Católica Argentinafalse |
dc.title.none.fl_str_mv |
Quality of service assesment using machine learning techniques for the NETCONF protocol |
title |
Quality of service assesment using machine learning techniques for the NETCONF protocol |
spellingShingle |
Quality of service assesment using machine learning techniques for the NETCONF protocol Ouret, Javier A. PROTOCOLOS APRENDIZAJE AUTOMÁTICO MODELO DE DATOS REDES |
title_short |
Quality of service assesment using machine learning techniques for the NETCONF protocol |
title_full |
Quality of service assesment using machine learning techniques for the NETCONF protocol |
title_fullStr |
Quality of service assesment using machine learning techniques for the NETCONF protocol |
title_full_unstemmed |
Quality of service assesment using machine learning techniques for the NETCONF protocol |
title_sort |
Quality of service assesment using machine learning techniques for the NETCONF protocol |
dc.creator.none.fl_str_mv |
Ouret, Javier A. Parravicini, Ignacio |
author |
Ouret, Javier A. |
author_facet |
Ouret, Javier A. Parravicini, Ignacio |
author_role |
author |
author2 |
Parravicini, Ignacio |
author2_role |
author |
dc.subject.none.fl_str_mv |
PROTOCOLOS APRENDIZAJE AUTOMÁTICO MODELO DE DATOS REDES |
topic |
PROTOCOLOS APRENDIZAJE AUTOMÁTICO MODELO DE DATOS REDES |
dc.description.none.fl_txt_mv |
Fil: Ouret, Javier A. Pontificia Universidad Católica Argentina. Facultad de Ingeniería; Argentina Fil: Parravicini, Ignacio. Pontificia Universidad Católica Argentina. Facultad de Ingeniería; Argentina Abstract: Study of an unsupervised machine learning approach for the testing results defined by the RFC2544 - ITU.Y1564 standard methodologies and the use of NETCONF protocol to automatically assess traffic parameters required to comply with quality of service level agreements. By doing disruptive and non-disruptive tests for service integrity, a service provider can certify that the working parameters of a delivered Ethernet circuit complies with the end user expectations, to avoid poor application performance. This work focus in an unsupervised learning approach using Expectation Maximization based clustering algorithm. We find that the unsupervised technique used is an excellent tool for exploring and classify service parameters like frame delay, frame delay variation, packet high loss intervals, availability and throughput. A correlation of parameters with the type of service required for the network flows (real time IP for data, video and voice applications) can be applied to automatically set bandwidth profiles. The bandwidth profiles can be configured per port, VLAN and CoS based, in one or multiple EVCs (Ethernet Virtual Circuits) per UNI device port. For the setup we adopt the Yang data modeling language and XML NETCONF message encoding protocol, followed by a delayed or an optional non-delayed orchestrated activation in the network devices via multiple NETCONF transactions. |
description |
Fil: Ouret, Javier A. Pontificia Universidad Católica Argentina. Facultad de Ingeniería; Argentina |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://repositorio.uca.edu.ar/handle/123456789/14751 978-1-5386-5447-7 10.1109/CACIDI.2018.8584342 Ouret, J. A., Parravicini, I. Quality of service assesment using machine learning techniques for the NETCONF protocol [en línea]. En: II Congreso Argentino de Ciencias de la Informática y Desarrollos de Investigación (CACIDI): 28 a 30 de noviembre. Buenos Aires: Universidad CAECE, 2018. Disponible en: https://repositorio.uca.edu.ar/handle/123456789/14751 |
url |
https://repositorio.uca.edu.ar/handle/123456789/14751 |
identifier_str_mv |
978-1-5386-5447-7 10.1109/CACIDI.2018.8584342 Ouret, J. A., Parravicini, I. Quality of service assesment using machine learning techniques for the NETCONF protocol [en línea]. En: II Congreso Argentino de Ciencias de la Informática y Desarrollos de Investigación (CACIDI): 28 a 30 de noviembre. Buenos Aires: Universidad CAECE, 2018. Disponible en: https://repositorio.uca.edu.ar/handle/123456789/14751 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
IEE Explore |
publisher.none.fl_str_mv |
IEE Explore |
dc.source.none.fl_str_mv |
II Congreso Argentino de Ciencias de la Informática y Desarrollos de Investigación (CACIDI): 28 a 30 de noviembre. Buenos Aires: Universidad CAECE, 2018 reponame:Repositorio Institucional (UCA) instname:Pontificia Universidad Católica Argentina |
reponame_str |
Repositorio Institucional (UCA) |
collection |
Repositorio Institucional (UCA) |
instname_str |
Pontificia Universidad Católica Argentina |
repository.name.fl_str_mv |
Repositorio Institucional (UCA) - Pontificia Universidad Católica Argentina |
repository.mail.fl_str_mv |
claudia_fernandez@uca.edu.ar |
_version_ |
1836638364071100416 |
score |
13.070432 |