Quality of service assesment using machine learning techniques for the NETCONF protocol

Autores
Ouret, Javier A.; Parravicini, Ignacio
Año de publicación
2018
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
Fil: Ouret, Javier A. Pontificia Universidad Católica Argentina. Facultad de Ingeniería; Argentina
Fil: Parravicini, Ignacio. Pontificia Universidad Católica Argentina. Facultad de Ingeniería; Argentina
Abstract: Study of an unsupervised machine learning approach for the testing results defined by the RFC2544 - ITU.Y1564 standard methodologies and the use of NETCONF protocol to automatically assess traffic parameters required to comply with quality of service level agreements. By doing disruptive and non-disruptive tests for service integrity, a service provider can certify that the working parameters of a delivered Ethernet circuit complies with the end user expectations, to avoid poor application performance. This work focus in an unsupervised learning approach using Expectation Maximization based clustering algorithm. We find that the unsupervised technique used is an excellent tool for exploring and classify service parameters like frame delay, frame delay variation, packet high loss intervals, availability and throughput. A correlation of parameters with the type of service required for the network flows (real time IP for data, video and voice applications) can be applied to automatically set bandwidth profiles. The bandwidth profiles can be configured per port, VLAN and CoS based, in one or multiple EVCs (Ethernet Virtual Circuits) per UNI device port. For the setup we adopt the Yang data modeling language and XML NETCONF message encoding protocol, followed by a delayed or an optional non-delayed orchestrated activation in the network devices via multiple NETCONF transactions.
Fuente
II Congreso Argentino de Ciencias de la Informática y Desarrollos de Investigación (CACIDI): 28 a 30 de noviembre. Buenos Aires: Universidad CAECE, 2018
Materia
PROTOCOLOS
APRENDIZAJE AUTOMÁTICO
MODELO DE DATOS
REDES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
Repositorio Institucional (UCA)
Institución
Pontificia Universidad Católica Argentina
OAI Identificador
oai:ucacris:123456789/14751

id RIUCA_bba920ff217df8e5ed514e971396ac29
oai_identifier_str oai:ucacris:123456789/14751
network_acronym_str RIUCA
repository_id_str 2585
network_name_str Repositorio Institucional (UCA)
spelling Quality of service assesment using machine learning techniques for the NETCONF protocolOuret, Javier A.Parravicini, IgnacioPROTOCOLOSAPRENDIZAJE AUTOMÁTICOMODELO DE DATOSREDESFil: Ouret, Javier A. Pontificia Universidad Católica Argentina. Facultad de Ingeniería; ArgentinaFil: Parravicini, Ignacio. Pontificia Universidad Católica Argentina. Facultad de Ingeniería; ArgentinaAbstract: Study of an unsupervised machine learning approach for the testing results defined by the RFC2544 - ITU.Y1564 standard methodologies and the use of NETCONF protocol to automatically assess traffic parameters required to comply with quality of service level agreements. By doing disruptive and non-disruptive tests for service integrity, a service provider can certify that the working parameters of a delivered Ethernet circuit complies with the end user expectations, to avoid poor application performance. This work focus in an unsupervised learning approach using Expectation Maximization based clustering algorithm. We find that the unsupervised technique used is an excellent tool for exploring and classify service parameters like frame delay, frame delay variation, packet high loss intervals, availability and throughput. A correlation of parameters with the type of service required for the network flows (real time IP for data, video and voice applications) can be applied to automatically set bandwidth profiles. The bandwidth profiles can be configured per port, VLAN and CoS based, in one or multiple EVCs (Ethernet Virtual Circuits) per UNI device port. For the setup we adopt the Yang data modeling language and XML NETCONF message encoding protocol, followed by a delayed or an optional non-delayed orchestrated activation in the network devices via multiple NETCONF transactions.IEE Explore2018info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttps://repositorio.uca.edu.ar/handle/123456789/14751978-1-5386-5447-710.1109/CACIDI.2018.8584342Ouret, J. A., Parravicini, I. Quality of service assesment using machine learning techniques for the NETCONF protocol [en línea]. En: II Congreso Argentino de Ciencias de la Informática y Desarrollos de Investigación (CACIDI): 28 a 30 de noviembre. Buenos Aires: Universidad CAECE, 2018. Disponible en: https://repositorio.uca.edu.ar/handle/123456789/14751II Congreso Argentino de Ciencias de la Informática y Desarrollos de Investigación (CACIDI): 28 a 30 de noviembre. Buenos Aires: Universidad CAECE, 2018reponame:Repositorio Institucional (UCA)instname:Pontificia Universidad Católica Argentinaenginfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/2025-07-03T10:58:46Zoai:ucacris:123456789/14751instacron:UCAInstitucionalhttps://repositorio.uca.edu.ar/Universidad privadaNo correspondehttps://repositorio.uca.edu.ar/oaiclaudia_fernandez@uca.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:25852025-07-03 10:58:46.833Repositorio Institucional (UCA) - Pontificia Universidad Católica Argentinafalse
dc.title.none.fl_str_mv Quality of service assesment using machine learning techniques for the NETCONF protocol
title Quality of service assesment using machine learning techniques for the NETCONF protocol
spellingShingle Quality of service assesment using machine learning techniques for the NETCONF protocol
Ouret, Javier A.
PROTOCOLOS
APRENDIZAJE AUTOMÁTICO
MODELO DE DATOS
REDES
title_short Quality of service assesment using machine learning techniques for the NETCONF protocol
title_full Quality of service assesment using machine learning techniques for the NETCONF protocol
title_fullStr Quality of service assesment using machine learning techniques for the NETCONF protocol
title_full_unstemmed Quality of service assesment using machine learning techniques for the NETCONF protocol
title_sort Quality of service assesment using machine learning techniques for the NETCONF protocol
dc.creator.none.fl_str_mv Ouret, Javier A.
Parravicini, Ignacio
author Ouret, Javier A.
author_facet Ouret, Javier A.
Parravicini, Ignacio
author_role author
author2 Parravicini, Ignacio
author2_role author
dc.subject.none.fl_str_mv PROTOCOLOS
APRENDIZAJE AUTOMÁTICO
MODELO DE DATOS
REDES
topic PROTOCOLOS
APRENDIZAJE AUTOMÁTICO
MODELO DE DATOS
REDES
dc.description.none.fl_txt_mv Fil: Ouret, Javier A. Pontificia Universidad Católica Argentina. Facultad de Ingeniería; Argentina
Fil: Parravicini, Ignacio. Pontificia Universidad Católica Argentina. Facultad de Ingeniería; Argentina
Abstract: Study of an unsupervised machine learning approach for the testing results defined by the RFC2544 - ITU.Y1564 standard methodologies and the use of NETCONF protocol to automatically assess traffic parameters required to comply with quality of service level agreements. By doing disruptive and non-disruptive tests for service integrity, a service provider can certify that the working parameters of a delivered Ethernet circuit complies with the end user expectations, to avoid poor application performance. This work focus in an unsupervised learning approach using Expectation Maximization based clustering algorithm. We find that the unsupervised technique used is an excellent tool for exploring and classify service parameters like frame delay, frame delay variation, packet high loss intervals, availability and throughput. A correlation of parameters with the type of service required for the network flows (real time IP for data, video and voice applications) can be applied to automatically set bandwidth profiles. The bandwidth profiles can be configured per port, VLAN and CoS based, in one or multiple EVCs (Ethernet Virtual Circuits) per UNI device port. For the setup we adopt the Yang data modeling language and XML NETCONF message encoding protocol, followed by a delayed or an optional non-delayed orchestrated activation in the network devices via multiple NETCONF transactions.
description Fil: Ouret, Javier A. Pontificia Universidad Católica Argentina. Facultad de Ingeniería; Argentina
publishDate 2018
dc.date.none.fl_str_mv 2018
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv https://repositorio.uca.edu.ar/handle/123456789/14751
978-1-5386-5447-7
10.1109/CACIDI.2018.8584342
Ouret, J. A., Parravicini, I. Quality of service assesment using machine learning techniques for the NETCONF protocol [en línea]. En: II Congreso Argentino de Ciencias de la Informática y Desarrollos de Investigación (CACIDI): 28 a 30 de noviembre. Buenos Aires: Universidad CAECE, 2018. Disponible en: https://repositorio.uca.edu.ar/handle/123456789/14751
url https://repositorio.uca.edu.ar/handle/123456789/14751
identifier_str_mv 978-1-5386-5447-7
10.1109/CACIDI.2018.8584342
Ouret, J. A., Parravicini, I. Quality of service assesment using machine learning techniques for the NETCONF protocol [en línea]. En: II Congreso Argentino de Ciencias de la Informática y Desarrollos de Investigación (CACIDI): 28 a 30 de noviembre. Buenos Aires: Universidad CAECE, 2018. Disponible en: https://repositorio.uca.edu.ar/handle/123456789/14751
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv IEE Explore
publisher.none.fl_str_mv IEE Explore
dc.source.none.fl_str_mv II Congreso Argentino de Ciencias de la Informática y Desarrollos de Investigación (CACIDI): 28 a 30 de noviembre. Buenos Aires: Universidad CAECE, 2018
reponame:Repositorio Institucional (UCA)
instname:Pontificia Universidad Católica Argentina
reponame_str Repositorio Institucional (UCA)
collection Repositorio Institucional (UCA)
instname_str Pontificia Universidad Católica Argentina
repository.name.fl_str_mv Repositorio Institucional (UCA) - Pontificia Universidad Católica Argentina
repository.mail.fl_str_mv claudia_fernandez@uca.edu.ar
_version_ 1836638364071100416
score 13.070432