Diseño de operadores de ventana basados en matemática difusa para la segmentación de imágenes médicas

Autores
Robalino Trujillo, Emilio José
Año de publicación
2024
Idioma
español castellano
Tipo de recurso
tesis doctoral
Estado
versión aceptada
Colaborador/a o director/a de tesis
Ballarin, Virginia
Borrero, Luis
Descripción
El procesamiento digital de imágenes consiste en la transformación de imágenes mediante funciones conocidas como operadores de imagen. Los operadores de imágenes más conocidos son los operadores morfológicos clásicos y difusos estudiados por la Morfología Matemática clásica y difusa, respectivamente. La combinación de los operadores morfológicos básicos, dilatación y erosión, permiten el diseño de operadores morfológicos complejos que resuelven tareas de procesamiento complejas como la segmentación. Dicha combinación de operadores morfológicos básicos, dependen del conocimiento y experiencia del diseñador para encontrar la mejor combinación o secuencia de operadores, por lo que el diseñador debe aplicar el enfoque de prueba y error en cada secuencia de operaciones. Este tipo de diseño de operadores morfológicos complejos es conocido como diseño heurístico y dado que su desarrollo requiere mucho tiempo, se ha considerado como enfoque alternativo el uso técnicas de aprendizaje automático para el diseño de operadores morfológicos. Una clase operadores morfológicos, invariantes a traslaciones y definidos dentro de una ventana, son los operadores de ventana o w-operadores. El diseño automático de los w-operadores, consiste en la estimación estadística de w-operadores que transformen una imagen con un problema a resolver en su imagen deseada o ideal, mediante el uso de ejemplos y técnicas de aprendizaje automático. El principal inconveniente en el diseño automático de w-operadores radica en la gran cantidad de ejemplos necesarios para estimar un w-operador que transforme imágenes que no fueron presentadas como ejemplos durante el diseño en sus imágenes ideales. La cantidad limitada de ejemplos no permite que el w-operador diseñado transforme nuevas imágenes de entrada en sus imágenes ideales, dando lugar al problema de generalización. En esta tesis, para resolver este problema, se propone implementar el uso de funciones de pertenencia de la Lógica Difusa, la cual representa el conocimiento en un lenguaje matemático a través de la Teoría de conjuntos difusos. La implementación de las funciones de pertenencia en el diseño de w-operadores, da lugar al diseño de nuevos operadores morfológicos, los w-operadores difusos. Esta propuesta es aplicada al diseño automático de w-operadores para la segmentación de dos clases y multiclase de imágenes biomédicas.
Fil: Robalino Trujillo, Emiliano José. Universidad Nacional de Mar del Plata. Facultad de Ingeniería; Argentina
Materia
Aplicaciones biomédicas
Bioaplicaciones
Tratamientos de imágenes
Operadores morfológicos clásicos y difusos
Imágenes biomédicas
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/4.0/
Repositorio
Repositorio Institucional Facultad de Ingeniería - UNMDP
Institución
Universidad Nacional de Mar del Plata. Facultad de Ingeniería
OAI Identificador
oai:rinfi.fi.mdp.edu.ar:123456789/904

id RINFIUNMDP_abc974f5588e499ba2d356fd74b0fef5
oai_identifier_str oai:rinfi.fi.mdp.edu.ar:123456789/904
network_acronym_str RINFIUNMDP
repository_id_str
network_name_str Repositorio Institucional Facultad de Ingeniería - UNMDP
spelling Diseño de operadores de ventana basados en matemática difusa para la segmentación de imágenes médicasRobalino Trujillo, Emilio JoséAplicaciones biomédicasBioaplicacionesTratamientos de imágenesOperadores morfológicos clásicos y difusosImágenes biomédicasEl procesamiento digital de imágenes consiste en la transformación de imágenes mediante funciones conocidas como operadores de imagen. Los operadores de imágenes más conocidos son los operadores morfológicos clásicos y difusos estudiados por la Morfología Matemática clásica y difusa, respectivamente. La combinación de los operadores morfológicos básicos, dilatación y erosión, permiten el diseño de operadores morfológicos complejos que resuelven tareas de procesamiento complejas como la segmentación. Dicha combinación de operadores morfológicos básicos, dependen del conocimiento y experiencia del diseñador para encontrar la mejor combinación o secuencia de operadores, por lo que el diseñador debe aplicar el enfoque de prueba y error en cada secuencia de operaciones. Este tipo de diseño de operadores morfológicos complejos es conocido como diseño heurístico y dado que su desarrollo requiere mucho tiempo, se ha considerado como enfoque alternativo el uso técnicas de aprendizaje automático para el diseño de operadores morfológicos. Una clase operadores morfológicos, invariantes a traslaciones y definidos dentro de una ventana, son los operadores de ventana o w-operadores. El diseño automático de los w-operadores, consiste en la estimación estadística de w-operadores que transformen una imagen con un problema a resolver en su imagen deseada o ideal, mediante el uso de ejemplos y técnicas de aprendizaje automático. El principal inconveniente en el diseño automático de w-operadores radica en la gran cantidad de ejemplos necesarios para estimar un w-operador que transforme imágenes que no fueron presentadas como ejemplos durante el diseño en sus imágenes ideales. La cantidad limitada de ejemplos no permite que el w-operador diseñado transforme nuevas imágenes de entrada en sus imágenes ideales, dando lugar al problema de generalización. En esta tesis, para resolver este problema, se propone implementar el uso de funciones de pertenencia de la Lógica Difusa, la cual representa el conocimiento en un lenguaje matemático a través de la Teoría de conjuntos difusos. La implementación de las funciones de pertenencia en el diseño de w-operadores, da lugar al diseño de nuevos operadores morfológicos, los w-operadores difusos. Esta propuesta es aplicada al diseño automático de w-operadores para la segmentación de dos clases y multiclase de imágenes biomédicas.Fil: Robalino Trujillo, Emiliano José. Universidad Nacional de Mar del Plata. Facultad de Ingeniería; ArgentinaUniversidad Nacional de Mar del Plata. Facultad de Ingeniería. ArgentinaBallarin, VirginiaBorrero, Luis2024-08-09Thesisinfo:eu-repo/semantics/acceptedVersioninfo:eu-repo/semantics/doctoralThesishttp://purl.org/coar/resource_type/c_db06info:ar-repo/semantics/tesisDoctoralapplication/pdfhttp://rinfi.fi.mdp.edu.ar/handle/123456789/904spainfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/reponame:Repositorio Institucional Facultad de Ingeniería - UNMDPinstname:Universidad Nacional de Mar del Plata. Facultad de Ingeniería2025-09-29T15:02:39Zoai:rinfi.fi.mdp.edu.ar:123456789/904instacron:FI-UNMDPInstitucionalhttps://rinfi.fi.mdp.edu.ar/Universidad públicahttps://www.fi.mdp.edu.ar/https://rinfi.fi.mdp.edu.ar/oai/snrdjosemrvs@fi.mdp.edu.arArgentinaopendoar:2025-09-29 15:02:40.138Repositorio Institucional Facultad de Ingeniería - UNMDP - Universidad Nacional de Mar del Plata. Facultad de Ingenieríafalse
dc.title.none.fl_str_mv Diseño de operadores de ventana basados en matemática difusa para la segmentación de imágenes médicas
title Diseño de operadores de ventana basados en matemática difusa para la segmentación de imágenes médicas
spellingShingle Diseño de operadores de ventana basados en matemática difusa para la segmentación de imágenes médicas
Robalino Trujillo, Emilio José
Aplicaciones biomédicas
Bioaplicaciones
Tratamientos de imágenes
Operadores morfológicos clásicos y difusos
Imágenes biomédicas
title_short Diseño de operadores de ventana basados en matemática difusa para la segmentación de imágenes médicas
title_full Diseño de operadores de ventana basados en matemática difusa para la segmentación de imágenes médicas
title_fullStr Diseño de operadores de ventana basados en matemática difusa para la segmentación de imágenes médicas
title_full_unstemmed Diseño de operadores de ventana basados en matemática difusa para la segmentación de imágenes médicas
title_sort Diseño de operadores de ventana basados en matemática difusa para la segmentación de imágenes médicas
dc.creator.none.fl_str_mv Robalino Trujillo, Emilio José
author Robalino Trujillo, Emilio José
author_facet Robalino Trujillo, Emilio José
author_role author
dc.contributor.none.fl_str_mv Ballarin, Virginia
Borrero, Luis
dc.subject.none.fl_str_mv Aplicaciones biomédicas
Bioaplicaciones
Tratamientos de imágenes
Operadores morfológicos clásicos y difusos
Imágenes biomédicas
topic Aplicaciones biomédicas
Bioaplicaciones
Tratamientos de imágenes
Operadores morfológicos clásicos y difusos
Imágenes biomédicas
dc.description.none.fl_txt_mv El procesamiento digital de imágenes consiste en la transformación de imágenes mediante funciones conocidas como operadores de imagen. Los operadores de imágenes más conocidos son los operadores morfológicos clásicos y difusos estudiados por la Morfología Matemática clásica y difusa, respectivamente. La combinación de los operadores morfológicos básicos, dilatación y erosión, permiten el diseño de operadores morfológicos complejos que resuelven tareas de procesamiento complejas como la segmentación. Dicha combinación de operadores morfológicos básicos, dependen del conocimiento y experiencia del diseñador para encontrar la mejor combinación o secuencia de operadores, por lo que el diseñador debe aplicar el enfoque de prueba y error en cada secuencia de operaciones. Este tipo de diseño de operadores morfológicos complejos es conocido como diseño heurístico y dado que su desarrollo requiere mucho tiempo, se ha considerado como enfoque alternativo el uso técnicas de aprendizaje automático para el diseño de operadores morfológicos. Una clase operadores morfológicos, invariantes a traslaciones y definidos dentro de una ventana, son los operadores de ventana o w-operadores. El diseño automático de los w-operadores, consiste en la estimación estadística de w-operadores que transformen una imagen con un problema a resolver en su imagen deseada o ideal, mediante el uso de ejemplos y técnicas de aprendizaje automático. El principal inconveniente en el diseño automático de w-operadores radica en la gran cantidad de ejemplos necesarios para estimar un w-operador que transforme imágenes que no fueron presentadas como ejemplos durante el diseño en sus imágenes ideales. La cantidad limitada de ejemplos no permite que el w-operador diseñado transforme nuevas imágenes de entrada en sus imágenes ideales, dando lugar al problema de generalización. En esta tesis, para resolver este problema, se propone implementar el uso de funciones de pertenencia de la Lógica Difusa, la cual representa el conocimiento en un lenguaje matemático a través de la Teoría de conjuntos difusos. La implementación de las funciones de pertenencia en el diseño de w-operadores, da lugar al diseño de nuevos operadores morfológicos, los w-operadores difusos. Esta propuesta es aplicada al diseño automático de w-operadores para la segmentación de dos clases y multiclase de imágenes biomédicas.
Fil: Robalino Trujillo, Emiliano José. Universidad Nacional de Mar del Plata. Facultad de Ingeniería; Argentina
description El procesamiento digital de imágenes consiste en la transformación de imágenes mediante funciones conocidas como operadores de imagen. Los operadores de imágenes más conocidos son los operadores morfológicos clásicos y difusos estudiados por la Morfología Matemática clásica y difusa, respectivamente. La combinación de los operadores morfológicos básicos, dilatación y erosión, permiten el diseño de operadores morfológicos complejos que resuelven tareas de procesamiento complejas como la segmentación. Dicha combinación de operadores morfológicos básicos, dependen del conocimiento y experiencia del diseñador para encontrar la mejor combinación o secuencia de operadores, por lo que el diseñador debe aplicar el enfoque de prueba y error en cada secuencia de operaciones. Este tipo de diseño de operadores morfológicos complejos es conocido como diseño heurístico y dado que su desarrollo requiere mucho tiempo, se ha considerado como enfoque alternativo el uso técnicas de aprendizaje automático para el diseño de operadores morfológicos. Una clase operadores morfológicos, invariantes a traslaciones y definidos dentro de una ventana, son los operadores de ventana o w-operadores. El diseño automático de los w-operadores, consiste en la estimación estadística de w-operadores que transformen una imagen con un problema a resolver en su imagen deseada o ideal, mediante el uso de ejemplos y técnicas de aprendizaje automático. El principal inconveniente en el diseño automático de w-operadores radica en la gran cantidad de ejemplos necesarios para estimar un w-operador que transforme imágenes que no fueron presentadas como ejemplos durante el diseño en sus imágenes ideales. La cantidad limitada de ejemplos no permite que el w-operador diseñado transforme nuevas imágenes de entrada en sus imágenes ideales, dando lugar al problema de generalización. En esta tesis, para resolver este problema, se propone implementar el uso de funciones de pertenencia de la Lógica Difusa, la cual representa el conocimiento en un lenguaje matemático a través de la Teoría de conjuntos difusos. La implementación de las funciones de pertenencia en el diseño de w-operadores, da lugar al diseño de nuevos operadores morfológicos, los w-operadores difusos. Esta propuesta es aplicada al diseño automático de w-operadores para la segmentación de dos clases y multiclase de imágenes biomédicas.
publishDate 2024
dc.date.none.fl_str_mv 2024-08-09
dc.type.none.fl_str_mv Thesis
info:eu-repo/semantics/acceptedVersion
info:eu-repo/semantics/doctoralThesis
http://purl.org/coar/resource_type/c_db06
info:ar-repo/semantics/tesisDoctoral
status_str acceptedVersion
format doctoralThesis
dc.identifier.none.fl_str_mv http://rinfi.fi.mdp.edu.ar/handle/123456789/904
url http://rinfi.fi.mdp.edu.ar/handle/123456789/904
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Argentina
publisher.none.fl_str_mv Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Argentina
dc.source.none.fl_str_mv reponame:Repositorio Institucional Facultad de Ingeniería - UNMDP
instname:Universidad Nacional de Mar del Plata. Facultad de Ingeniería
reponame_str Repositorio Institucional Facultad de Ingeniería - UNMDP
collection Repositorio Institucional Facultad de Ingeniería - UNMDP
instname_str Universidad Nacional de Mar del Plata. Facultad de Ingeniería
repository.name.fl_str_mv Repositorio Institucional Facultad de Ingeniería - UNMDP - Universidad Nacional de Mar del Plata. Facultad de Ingeniería
repository.mail.fl_str_mv josemrvs@fi.mdp.edu.ar
_version_ 1844623360666894336
score 12.559606