Biodegradable Composite Materials Based on Cassava Starch and Reinforced with Topinambur (Helianthus tuberosus) Aerial Part Fiber
- Autores
- Sierra Montes, L.; Melaj, M.; Lorenzo, M.; Ribba, L.; García, M.
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión aceptada
- Descripción
- The cultivation of topinambur (Helianthus tuberosus) has aroused the interest of producers since it is a source of inulin and can be used for biofuel production. During tuber processing, the aerial part of the crop remains as a by-product with no practical application. This work aimed to characterize the fibers obtained from the aerial part of topinambur and to evaluate their reinforcing potential in cassava starch-based films. Starch-based films with topinambur fiber (0, 5, and 10%) were prepared by extrusion followed by thermocompression. Topinambur residue contains 88.6% of total fiber, 8.5% ash, and 0.68% lipid. Mechanical film properties evidenced the reinforcement action of topinambur fiber, 10% content was able to increase up to 70% the Young’s modulus. SEM micrographs evidenced the good fibermatrix interaction. UV-visible capacity, opacity, and chromaticity parameters of TPS films increased with fiber content in the formulation. Fiber incorporation improved the hydrophobicity of the biocomposite materials by increasing the contact angle. Starch-based films biodegraded more than 55% after 110 days, showing a similar trend to that of microcrystalline cellulose. Thus, topinambur residue can be effectively used as a reinforcing agent for TPS materials, being an innovative and non-toxic additive within the circular economy premises.
Fil: Sierra Montes, L. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Desarrollo en Ciencia y Tecnología de los Alimentos (CONICET-CIDCA); Argentina
Fil: Sierra Montes, L. Universidad Nacional de La Plata. Facultad de Ciencias Exactas (UNLP); Argentina
Fil: Melaj, M. Universidad de Buenos Aires. Facultad de Ingeniería (UBA-FIUBA); Argentina
Fil: Melaj, M. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Tecnología en Polímeros y Nanotecnología (CONICET-ITPN); Argentina
Fil: Lorenzo, M. Instituto Nacional de Tecnología Industrial. Dirección Operativa. Gerencia Operativa de Desarrollo Tecnológico e Innovación. Subgerencia Operativa de Áreas De Conocimiento. Dirección Técnica de Materiales avanzados (INTI-GODTeI-SOAC); Argentina
Fil: Lorenzo, M. Universidad Nacional de San Martín. Instituto de Investigación e Ingeniería Ambiental (UNSAM-3iA); Argentina
Fil: Ribba, L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física (UBA-FCEN); Argentina
Fil: Ribba, L. Instituto Nacional de Tecnología Industrial. Dirección Operativa. Gerencia Operativa de Desarrollo Tecnológico e Innovación. Subgerencia Operativa de Áreas De Conocimiento. Dirección Técnica de Materiales avanzados (INTI-GODTeI-SOAC); Argentina
Fil: García, M. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Desarrollo en Ciencia y Tecnología de los Alimentos (CONICET-CIDCA); Argentina
Fil: García, M. Universidad Nacional de La Plata. Facultad de Ciencias Exactas (UNLP); Argentina - Fuente
- Sustainable Polymer and Energy 2024, 2, 10004
- Materia
-
Biodegradación
Agricultura
Polímeros termoplásticos
Almidones
Fibras biodegradables - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/4.0/
- Repositorio
- Institución
- Instituto Nacional de Tecnología Industrial
- OAI Identificador
- nuevadc:2024SierraMontesL_pdf
Ver los metadatos del registro completo
id |
RIINTI_e59418c34700b9b4299bc797e9e3f3be |
---|---|
oai_identifier_str |
nuevadc:2024SierraMontesL_pdf |
network_acronym_str |
RIINTI |
repository_id_str |
|
network_name_str |
Repositorio Institucional del Instituto Nacional de Tecnología Industrial (INTI) |
spelling |
Biodegradable Composite Materials Based on Cassava Starch and Reinforced with Topinambur (Helianthus tuberosus) Aerial Part FiberSierra Montes, L.Melaj, M.Lorenzo, M.Ribba, L.García, M.BiodegradaciónAgriculturaPolímeros termoplásticosAlmidonesFibras biodegradablesThe cultivation of topinambur (Helianthus tuberosus) has aroused the interest of producers since it is a source of inulin and can be used for biofuel production. During tuber processing, the aerial part of the crop remains as a by-product with no practical application. This work aimed to characterize the fibers obtained from the aerial part of topinambur and to evaluate their reinforcing potential in cassava starch-based films. Starch-based films with topinambur fiber (0, 5, and 10%) were prepared by extrusion followed by thermocompression. Topinambur residue contains 88.6% of total fiber, 8.5% ash, and 0.68% lipid. Mechanical film properties evidenced the reinforcement action of topinambur fiber, 10% content was able to increase up to 70% the Young’s modulus. SEM micrographs evidenced the good fibermatrix interaction. UV-visible capacity, opacity, and chromaticity parameters of TPS films increased with fiber content in the formulation. Fiber incorporation improved the hydrophobicity of the biocomposite materials by increasing the contact angle. Starch-based films biodegraded more than 55% after 110 days, showing a similar trend to that of microcrystalline cellulose. Thus, topinambur residue can be effectively used as a reinforcing agent for TPS materials, being an innovative and non-toxic additive within the circular economy premises.Fil: Sierra Montes, L. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Desarrollo en Ciencia y Tecnología de los Alimentos (CONICET-CIDCA); ArgentinaFil: Sierra Montes, L. Universidad Nacional de La Plata. Facultad de Ciencias Exactas (UNLP); ArgentinaFil: Melaj, M. Universidad de Buenos Aires. Facultad de Ingeniería (UBA-FIUBA); ArgentinaFil: Melaj, M. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Tecnología en Polímeros y Nanotecnología (CONICET-ITPN); ArgentinaFil: Lorenzo, M. Instituto Nacional de Tecnología Industrial. Dirección Operativa. Gerencia Operativa de Desarrollo Tecnológico e Innovación. Subgerencia Operativa de Áreas De Conocimiento. Dirección Técnica de Materiales avanzados (INTI-GODTeI-SOAC); ArgentinaFil: Lorenzo, M. Universidad Nacional de San Martín. Instituto de Investigación e Ingeniería Ambiental (UNSAM-3iA); ArgentinaFil: Ribba, L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física (UBA-FCEN); ArgentinaFil: Ribba, L. Instituto Nacional de Tecnología Industrial. Dirección Operativa. Gerencia Operativa de Desarrollo Tecnológico e Innovación. Subgerencia Operativa de Áreas De Conocimiento. Dirección Técnica de Materiales avanzados (INTI-GODTeI-SOAC); ArgentinaFil: García, M. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Desarrollo en Ciencia y Tecnología de los Alimentos (CONICET-CIDCA); ArgentinaFil: García, M. Universidad Nacional de La Plata. Facultad de Ciencias Exactas (UNLP); ArgentinaSCIEPublish2024info:eu-repo/semantics/articleinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf2024SierraMontesL.pdfhttps://app.inti.gob.ar/greenstone3/sites/localsite/collect/nuevadc/index/assoc/2024Sier/raMontes.dir/doc.pdfSustainable Polymer and Energy 2024, 2, 10004reponame:Repositorio Institucional del Instituto Nacional de Tecnología Industrial (INTI)instname:Instituto Nacional de Tecnología Industrialenginfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/openAccess2025-09-04T11:43:05Znuevadc:2024SierraMontesL_pdfinstacron:INTIInstitucionalhttps://app.inti.gob.ar/greenstone3/biblioOrganismo científico-tecnológicohttps://argentina.gob.ar/intihttps://app.inti.gob.ar/greenstone3/oaiserver?verb=Identifypfalcato@inti.gob.arArgentinaopendoar:2025-09-04 11:43:06.162Repositorio Institucional del Instituto Nacional de Tecnología Industrial (INTI) - Instituto Nacional de Tecnología Industrialfalse |
dc.title.none.fl_str_mv |
Biodegradable Composite Materials Based on Cassava Starch and Reinforced with Topinambur (Helianthus tuberosus) Aerial Part Fiber |
title |
Biodegradable Composite Materials Based on Cassava Starch and Reinforced with Topinambur (Helianthus tuberosus) Aerial Part Fiber |
spellingShingle |
Biodegradable Composite Materials Based on Cassava Starch and Reinforced with Topinambur (Helianthus tuberosus) Aerial Part Fiber Sierra Montes, L. Biodegradación Agricultura Polímeros termoplásticos Almidones Fibras biodegradables |
title_short |
Biodegradable Composite Materials Based on Cassava Starch and Reinforced with Topinambur (Helianthus tuberosus) Aerial Part Fiber |
title_full |
Biodegradable Composite Materials Based on Cassava Starch and Reinforced with Topinambur (Helianthus tuberosus) Aerial Part Fiber |
title_fullStr |
Biodegradable Composite Materials Based on Cassava Starch and Reinforced with Topinambur (Helianthus tuberosus) Aerial Part Fiber |
title_full_unstemmed |
Biodegradable Composite Materials Based on Cassava Starch and Reinforced with Topinambur (Helianthus tuberosus) Aerial Part Fiber |
title_sort |
Biodegradable Composite Materials Based on Cassava Starch and Reinforced with Topinambur (Helianthus tuberosus) Aerial Part Fiber |
dc.creator.none.fl_str_mv |
Sierra Montes, L. Melaj, M. Lorenzo, M. Ribba, L. García, M. |
author |
Sierra Montes, L. |
author_facet |
Sierra Montes, L. Melaj, M. Lorenzo, M. Ribba, L. García, M. |
author_role |
author |
author2 |
Melaj, M. Lorenzo, M. Ribba, L. García, M. |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Biodegradación Agricultura Polímeros termoplásticos Almidones Fibras biodegradables |
topic |
Biodegradación Agricultura Polímeros termoplásticos Almidones Fibras biodegradables |
dc.description.none.fl_txt_mv |
The cultivation of topinambur (Helianthus tuberosus) has aroused the interest of producers since it is a source of inulin and can be used for biofuel production. During tuber processing, the aerial part of the crop remains as a by-product with no practical application. This work aimed to characterize the fibers obtained from the aerial part of topinambur and to evaluate their reinforcing potential in cassava starch-based films. Starch-based films with topinambur fiber (0, 5, and 10%) were prepared by extrusion followed by thermocompression. Topinambur residue contains 88.6% of total fiber, 8.5% ash, and 0.68% lipid. Mechanical film properties evidenced the reinforcement action of topinambur fiber, 10% content was able to increase up to 70% the Young’s modulus. SEM micrographs evidenced the good fibermatrix interaction. UV-visible capacity, opacity, and chromaticity parameters of TPS films increased with fiber content in the formulation. Fiber incorporation improved the hydrophobicity of the biocomposite materials by increasing the contact angle. Starch-based films biodegraded more than 55% after 110 days, showing a similar trend to that of microcrystalline cellulose. Thus, topinambur residue can be effectively used as a reinforcing agent for TPS materials, being an innovative and non-toxic additive within the circular economy premises. Fil: Sierra Montes, L. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Desarrollo en Ciencia y Tecnología de los Alimentos (CONICET-CIDCA); Argentina Fil: Sierra Montes, L. Universidad Nacional de La Plata. Facultad de Ciencias Exactas (UNLP); Argentina Fil: Melaj, M. Universidad de Buenos Aires. Facultad de Ingeniería (UBA-FIUBA); Argentina Fil: Melaj, M. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Tecnología en Polímeros y Nanotecnología (CONICET-ITPN); Argentina Fil: Lorenzo, M. Instituto Nacional de Tecnología Industrial. Dirección Operativa. Gerencia Operativa de Desarrollo Tecnológico e Innovación. Subgerencia Operativa de Áreas De Conocimiento. Dirección Técnica de Materiales avanzados (INTI-GODTeI-SOAC); Argentina Fil: Lorenzo, M. Universidad Nacional de San Martín. Instituto de Investigación e Ingeniería Ambiental (UNSAM-3iA); Argentina Fil: Ribba, L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física (UBA-FCEN); Argentina Fil: Ribba, L. Instituto Nacional de Tecnología Industrial. Dirección Operativa. Gerencia Operativa de Desarrollo Tecnológico e Innovación. Subgerencia Operativa de Áreas De Conocimiento. Dirección Técnica de Materiales avanzados (INTI-GODTeI-SOAC); Argentina Fil: García, M. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Desarrollo en Ciencia y Tecnología de los Alimentos (CONICET-CIDCA); Argentina Fil: García, M. Universidad Nacional de La Plata. Facultad de Ciencias Exactas (UNLP); Argentina |
description |
The cultivation of topinambur (Helianthus tuberosus) has aroused the interest of producers since it is a source of inulin and can be used for biofuel production. During tuber processing, the aerial part of the crop remains as a by-product with no practical application. This work aimed to characterize the fibers obtained from the aerial part of topinambur and to evaluate their reinforcing potential in cassava starch-based films. Starch-based films with topinambur fiber (0, 5, and 10%) were prepared by extrusion followed by thermocompression. Topinambur residue contains 88.6% of total fiber, 8.5% ash, and 0.68% lipid. Mechanical film properties evidenced the reinforcement action of topinambur fiber, 10% content was able to increase up to 70% the Young’s modulus. SEM micrographs evidenced the good fibermatrix interaction. UV-visible capacity, opacity, and chromaticity parameters of TPS films increased with fiber content in the formulation. Fiber incorporation improved the hydrophobicity of the biocomposite materials by increasing the contact angle. Starch-based films biodegraded more than 55% after 110 days, showing a similar trend to that of microcrystalline cellulose. Thus, topinambur residue can be effectively used as a reinforcing agent for TPS materials, being an innovative and non-toxic additive within the circular economy premises. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/acceptedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
acceptedVersion |
dc.identifier.none.fl_str_mv |
2024SierraMontesL.pdf https://app.inti.gob.ar/greenstone3/sites/localsite/collect/nuevadc/index/assoc/2024Sier/raMontes.dir/doc.pdf |
identifier_str_mv |
2024SierraMontesL.pdf |
url |
https://app.inti.gob.ar/greenstone3/sites/localsite/collect/nuevadc/index/assoc/2024Sier/raMontes.dir/doc.pdf |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/4.0/ openAccess |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0/ openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
SCIEPublish |
publisher.none.fl_str_mv |
SCIEPublish |
dc.source.none.fl_str_mv |
Sustainable Polymer and Energy 2024, 2, 10004 reponame:Repositorio Institucional del Instituto Nacional de Tecnología Industrial (INTI) instname:Instituto Nacional de Tecnología Industrial |
reponame_str |
Repositorio Institucional del Instituto Nacional de Tecnología Industrial (INTI) |
collection |
Repositorio Institucional del Instituto Nacional de Tecnología Industrial (INTI) |
instname_str |
Instituto Nacional de Tecnología Industrial |
repository.name.fl_str_mv |
Repositorio Institucional del Instituto Nacional de Tecnología Industrial (INTI) - Instituto Nacional de Tecnología Industrial |
repository.mail.fl_str_mv |
pfalcato@inti.gob.ar |
_version_ |
1842346559081021440 |
score |
12.623145 |