Prediction of transition probability from unemployment to employment in argentina (2003-2019)

Autores
Staudt, Agustín; Heredia, Juan Luis
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Fil: Staudt, Agustín. Ministry of Productive Development of Argentina; Argentina.
Fil: Heredia, Juan Luis. MisES Consulting; Argentina.
Despite their growing participation in the labor market, women who decide to go out and look for a job face greater difficulties in obtaining it. The participation of women in the labor force is considerably lower, even if entering the labor market the possibility of actually finding a job is also less than the chance that men have of doing so (CIPPEC, 2019). Being able to predict the probability of occupational insertion of men and women, and inquire about the factors that influence this probability, is essential in order to understand gender gaps in the labor market, helping to improve the design and implementation of public policies with a gender perspective, with the final goal to achieve equality of opportunities. In this framework, the present work will seek to predict the probability of transition from unemployment to the employment in Argentina from 2003 to 2019, using the Permanent Household Survey, based on traditional prediction techniques and Machine Learning, with the objective to find the most robust model that achieves the highest level of accuracy.
Materia
Gender
Employment
Inequality
Machine
Learning
Nivel de accesibilidad
acceso abierto
Condiciones de uso
Atribución-NoComercial-CompartirIgual 4.0 Internacional
Repositorio
Repositorio Institucional Digital de la Universidad Nacional de Misiones (UNaM)
Institución
Universidad Nacional de Misiones
OAI Identificador
oai:rid.unam.edu.ar:20.500.12219/3567

id RIDUNaM_6d04448652adb117454c692b112ae587
oai_identifier_str oai:rid.unam.edu.ar:20.500.12219/3567
network_acronym_str RIDUNaM
repository_id_str
network_name_str Repositorio Institucional Digital de la Universidad Nacional de Misiones (UNaM)
spelling Prediction of transition probability from unemployment to employment in argentina (2003-2019)Staudt, AgustínHeredia, Juan LuisGenderEmploymentInequalityMachineLearningFil: Staudt, Agustín. Ministry of Productive Development of Argentina; Argentina.Fil: Heredia, Juan Luis. MisES Consulting; Argentina.Despite their growing participation in the labor market, women who decide to go out and look for a job face greater difficulties in obtaining it. The participation of women in the labor force is considerably lower, even if entering the labor market the possibility of actually finding a job is also less than the chance that men have of doing so (CIPPEC, 2019). Being able to predict the probability of occupational insertion of men and women, and inquire about the factors that influence this probability, is essential in order to understand gender gaps in the labor market, helping to improve the design and implementation of public policies with a gender perspective, with the final goal to achieve equality of opportunities. In this framework, the present work will seek to predict the probability of transition from unemployment to the employment in Argentina from 2003 to 2019, using the Permanent Household Survey, based on traditional prediction techniques and Machine Learning, with the objective to find the most robust model that achieves the highest level of accuracy.Universidad Nacional de Misiones. Facultad de Ciencias Económicas. Programa de Posgrado en Administración2021-11-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdf436.8 KBhttps://hdl.handle.net/20.500.12219/3567enginfo:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.36995/j.visiondefuturo.2021.25.02R.001.eninfo:eu-repo/semantics/altIdentifier/urn/https://revistacientifica.fce.unam.edu.ar/index.php/visiondefuturo/article/view/477/353info:eu-repo/semantics/openAccessAtribución-NoComercial-CompartirIgual 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-sa/4.0/reponame:Repositorio Institucional Digital de la Universidad Nacional de Misiones (UNaM)instname:Universidad Nacional de Misiones2026-02-05T14:27:47Zoai:rid.unam.edu.ar:20.500.12219/3567instacron:UNAMInstitucionalhttps://rid.unam.edu.ar/Universidad públicahttps://www.unam.edu.ar/https://rid.unam.edu.ar/oai/rsnrdArgentinaopendoar:2026-02-05 14:27:48.301Repositorio Institucional Digital de la Universidad Nacional de Misiones (UNaM) - Universidad Nacional de Misionesfalse
dc.title.none.fl_str_mv Prediction of transition probability from unemployment to employment in argentina (2003-2019)
title Prediction of transition probability from unemployment to employment in argentina (2003-2019)
spellingShingle Prediction of transition probability from unemployment to employment in argentina (2003-2019)
Staudt, Agustín
Gender
Employment
Inequality
Machine
Learning
title_short Prediction of transition probability from unemployment to employment in argentina (2003-2019)
title_full Prediction of transition probability from unemployment to employment in argentina (2003-2019)
title_fullStr Prediction of transition probability from unemployment to employment in argentina (2003-2019)
title_full_unstemmed Prediction of transition probability from unemployment to employment in argentina (2003-2019)
title_sort Prediction of transition probability from unemployment to employment in argentina (2003-2019)
dc.creator.none.fl_str_mv Staudt, Agustín
Heredia, Juan Luis
author Staudt, Agustín
author_facet Staudt, Agustín
Heredia, Juan Luis
author_role author
author2 Heredia, Juan Luis
author2_role author
dc.subject.none.fl_str_mv Gender
Employment
Inequality
Machine
Learning
topic Gender
Employment
Inequality
Machine
Learning
dc.description.none.fl_txt_mv Fil: Staudt, Agustín. Ministry of Productive Development of Argentina; Argentina.
Fil: Heredia, Juan Luis. MisES Consulting; Argentina.
Despite their growing participation in the labor market, women who decide to go out and look for a job face greater difficulties in obtaining it. The participation of women in the labor force is considerably lower, even if entering the labor market the possibility of actually finding a job is also less than the chance that men have of doing so (CIPPEC, 2019). Being able to predict the probability of occupational insertion of men and women, and inquire about the factors that influence this probability, is essential in order to understand gender gaps in the labor market, helping to improve the design and implementation of public policies with a gender perspective, with the final goal to achieve equality of opportunities. In this framework, the present work will seek to predict the probability of transition from unemployment to the employment in Argentina from 2003 to 2019, using the Permanent Household Survey, based on traditional prediction techniques and Machine Learning, with the objective to find the most robust model that achieves the highest level of accuracy.
description Fil: Staudt, Agustín. Ministry of Productive Development of Argentina; Argentina.
publishDate 2021
dc.date.none.fl_str_mv 2021-11-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://hdl.handle.net/20.500.12219/3567
url https://hdl.handle.net/20.500.12219/3567
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.36995/j.visiondefuturo.2021.25.02R.001.en
info:eu-repo/semantics/altIdentifier/urn/https://revistacientifica.fce.unam.edu.ar/index.php/visiondefuturo/article/view/477/353
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
Atribución-NoComercial-CompartirIgual 4.0 Internacional
http://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional
http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.none.fl_str_mv application/pdf
application/pdf
436.8 KB
dc.publisher.none.fl_str_mv Universidad Nacional de Misiones. Facultad de Ciencias Económicas. Programa de Posgrado en Administración
publisher.none.fl_str_mv Universidad Nacional de Misiones. Facultad de Ciencias Económicas. Programa de Posgrado en Administración
dc.source.none.fl_str_mv reponame:Repositorio Institucional Digital de la Universidad Nacional de Misiones (UNaM)
instname:Universidad Nacional de Misiones
reponame_str Repositorio Institucional Digital de la Universidad Nacional de Misiones (UNaM)
collection Repositorio Institucional Digital de la Universidad Nacional de Misiones (UNaM)
instname_str Universidad Nacional de Misiones
repository.name.fl_str_mv Repositorio Institucional Digital de la Universidad Nacional de Misiones (UNaM) - Universidad Nacional de Misiones
repository.mail.fl_str_mv
_version_ 1856307720539340800
score 12.600915